Abstract
Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611â622 (2010).
Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale (in the press).
Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803â810 (2010).
Koppens, F. H. L., Chang, D. E. & GarcÃa de Abajo, F. J. Graphene plasmonics: A platform for strong lightâmatter interactions. Nano Lett. 11, 3370â3377 (2011).
Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749â758 (2012).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706â710 (2009).
Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer pân diode. Nature Nanotech. 9, 257â261 (2014).
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable pân diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262â267 (2014).
Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64â67 (2011).
Low, T. & Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086â1101 (2014).
Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92, 42116 (2008).
Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).
Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).
Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).
Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532â535 (2008).
Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206â209 (2008).
Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839â843 (2009).
Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297â301 (2010).
Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883â887 (2013).
Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892â896 (2013).
Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888â891 (2013).
Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scripta T146, 014006 (2012).
Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564â589 (December, 2012).
Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193â335 (1969).
Peters, E. C., Lee, E. J. H., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene pân junction. Appl. Phys. Lett. 97, 193102 (2010).
Rao, G., Freitag, M., Chiu, H.-Y., Sundaram, R. S. & Avouris, P. Raman and photocurrent imaging of electrical stress-induced pân junctions in graphene. ACS Nano 5, 5848â5854 (2011).
Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).
Farmer, D. B. et al. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9, 388â392 (2009).
Lemme, M. C. et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 11, 4134â4137 (2011).
Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53â59 (2012).
Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).
Malic, E., Winzer, T., Bobkin, E. & Knorr, A. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B 84, 205406 (2011).
Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).
Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839â4843 (2010).
Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562â566 (2010).
Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648â52 (2011).
Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688â4692 (2011).
Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114â118 (2012).
Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electronâelectron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067â1125 (2012).
Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248â252 (2013).
Song, J. C. W., Tielrooij, K. J., Koppens, F. H. L. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).
Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119â1124 (2013).
Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).
Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electronâphonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).
Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. & Robertson, J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).
Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev Lett. 102, 206410 (2009).
Tse, W.-K. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).
Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electronâphonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).
Graham, M. W., Shi, S-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103â108 (2012).
Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature Phys. 9, 109â112 (2012).
Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644â1648 (2013).
Ashcroft, N. W. & Mermin, N. D. Solid State Physics 848 (Cengage Learning, 1976).
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109â162 (2009).
Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 81, 1687â1706 (1993).
Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1 (1994).
Rose, A. Concepts in Photoconductivity and Allied Problems (Krieger, 1978).
Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465â2468 (1993).
Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43, 380â387 (1996).
Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).
Tomadin, A. & Polini, M. Theory of the plasma-wave photoresponse of a gated graphene sheet. Phys. Rev. B 88, 205426 (2013).
Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 11, 865â871 (2012).
Spirito, D. et al. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104, 061111 (2014).
Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742â1746 (2009).
Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486â490 (2008).
Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039â1044 (2009).
Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 26803 (2008).
Huard, B., Stander, N., Sulpizio, J. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electronâhole asymmetry in graphene. Phys. Rev. B 78, 121402 (2008).
Urich, A. et al. Silver nanoisland enhanced Raman interaction in graphene. Appl. Phys. Lett. 101, 153113 (2012).
Withers, F., Bointon, T. H., Craciun, M. F. & Russo, S. All-graphene photodetectors. ACS Nano 7, 5052â5057 (2013).
Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun. 3, 646 (2012).
Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644â1648 (2013).
Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metalâgrapheneâmetal photodetectors. Nano Lett. 14, 3733â3742 (2014).
Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804â2808 (2011).
Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773â2777 (2012).
Engel, M. et al. Lightâmatter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).
Shiue, R., Gan, X., Gao, Y., Li, L. & Yao, X. Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 1, 1â11 (2013).
Liu, J. et al. High-performance, tensile-strained Ge pâiân photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).
Su, S. et al. GeSn pâiân photodetector for all telecommunication bands detection. Opt. Express 19, 6400â6405 (2011).
Schedin, F. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617â5626 (2010).
Mertens, J. et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 13, 5033â5038 (2013).
Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).
Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun. 2, 579 (2011).
Jablan, M., Soljacic, M. & Buljan, H. Plasmons in graphene: Fundamental properties and potential applications. Proc. IEEE 101, 1689â1704 (2013).
Thongrattanasiri, S., Koppens, F. H. L. & GarcÃa de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).
Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nature Commun. 4, 1951 (2013).
Chen, C.-C., Aykol, M., Chang, C.-C., Levi, A. F. J. & Cronin, S. B. Grapheneâsilicon Schottky diodes. Nano Lett. 11, 1863â1867 (2011).
Li, X. et al. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743â2748 (2010).
Miao, X. et al. High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745â2750 (2012).
An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909â916 (2013).
Tongay, S., Schumann, T. & Hebard, A. F. Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl. Phys. Lett. 95, 222103 (2009).
Tongay, S. et al. Rectification at grapheneâsemiconductor interfaces: Zero-gap semiconductor-based diodes. Phys. Rev. X 2, 011002 (2012).
Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J. & Stake, J. GrapheneâSi Schottky IR detector. IEEE J. Quantum Electron. 49, 589â594 (2013).
Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472â478 (2012).
Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Top. 148, 15â18 (2007).
Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151â157 (2008).
Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715â718 (2010).
Viljas, J. K. & Heikkilä, T. T. Electronâphonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).
Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).
Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).
Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).
Du, X., Prober, D. E., Vora, H. & Mckitterick, C. B. Graphene-based bolometers. Graphene 2D Mater. 1, 1â22 (2014).
Ryzhii, V. The theory of quantum-dot infrared phototransistors. Semicond. Sci. Technol. 11, 759â765 (1996).
Rowe, M. A. et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006).
Konstantatos, G. et al. Hybrid grapheneâquantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363â368 (2012).
Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878â5883 (2012).
Klekachev, A. V. et al. Electron accumulation in graphene by interaction with optically excited quantum dots. Physica E 43, 1046â1049 (2011).
Guo, W. et al. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 9, 3031â3036 (2013).
McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138â142 (2005).
Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180â183 (2006).
Böberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 19, 3574â3578 (2007).
Chen, S-Y. et al. Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon 63, 23â29 (2013).
Fang, Z. et al. Plasmon-induced doping of graphene. ACS Nano 6, 10222â10228 (2012).
Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum Electron. 34, 278â347 (2010).
Principi, A., Vignale, G., Carrega, M. & Polini, M. Impact of disorder on Dirac plasmon losses. Phys. Rev. B 88, 121405 (2013).
Principi, A., Vignale, G., Carrega, M. & Polini, M. Intrinsic lifetime of Dirac plasmons in graphene. Phys. Rev. B 88, 195405 (2013).
Ryzhii, V. & Ryzhii, M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B 79, 245311 (2009).
Ryzhii, V., Satou, A. & Otsuji, T. Plasma waves in two-dimensional electronâhole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007).
Knap, W. et al. Nanometer size field effect transistors for terahertz detectors. Nanotechnology 24, 214002 (2013).
Mittendorff, M. et al. Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103, 021113 (2013).
Cai, X. et al. Sensitive room-temperature terahertz detection via photothermoelectric effect in graphene. Preprint at http://arxiv.org/abs/1305.3297 (2013).
Fivaz, R., Mooser, E. & Moose, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743â755 (1967).
Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273, 69â83 (1963).
Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457â461 (1986).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271â1275 (2010).
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490â493 (2012).
Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74â80 (2012).
Choi, W. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832â5836 (2012).
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497â501 (2013).
Tsai, D.-S. et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905â3911 (2013).
Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695â700 (2012).
Liu, F. et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8, 752â760 (2014).
Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pân junctions. Nature Nanotech. 9, 268â272 (2014).
Hu, P., Wen, Z., Wang, L., Tan, P. & Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988â5994 (2012).
Hu, P. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 13, 1649â1654 (2013).
Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514â521 (2014).
Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347â3352 (2014).
Perea-López, N. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511â5517 (2013).
Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2 . Nano Lett. 13, 358â363 (2013).
Roy, K. et al. GrapheneâMoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826â830 (2013).
Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin grapheneâMoS2 heterostructures. Sci. Rep. 4, 3826 (2014).
Liu, C-H., Chang, Y., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotech. 9, 273â278 (2014).
Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947â950 (2012).
Georgiou, T. et al. Vertical field-effect transistor based on grapheneâWS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100â103 (2013).
Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664â3670 (2013).
Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311â1314 (2013).
Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952â958 (2013).
Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun. 4, 1811 (2013).
Gan, X. et al. Strong enhancement of lightâmatter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626â5631 (2012).
Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901â7906 (2009).
Novack, A. et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt. Express 21, 28387 (2013).
Ito, H., Furuta, T., Kodama, S., Watanabe, S. & Ishibashi, T. InP/lnGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth. Electron. Lett. 35, 1556â1557 (1999).
Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542â1544 (2009).
Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531â534 (2007).
Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photon. 5, 489â493 (2011).
Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97â105 (2007).
Acknowledgements
We acknowledge A. Tomadin, V. Pellegrini, A. Tredicucci, J. Song, K-J. Tielrooij, L. Levitov, P. Jarillo-Herrero, F. Bonaccorso, S. Kar, A. Kis, E. Lidorikis and T. J. Echtermeyer for useful discussions. We acknowledge funding from the EU Graphene Flagship (contract no. 604391), The Italian Ministry of Education, University, and Research (MIUR) through the program 'FIRBâFuturo in Ricerca 2010', Projects PLASMOGRAPH (Grant No. RBFR10M5BT) and FRONTIER (grant number RBFR10LULP), the Fundacicio Cellex Barcelona, the Career integration grant 294056 (GRANOP), ERC grants CarbonLight, Hetero2D, the Austrian Science Fund FWF (START Y-539), EU grants GENIUS, MEM4WIN, EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/L016087/1 and a Royal Society Wolfson Research Merit Award.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Koppens, F., Mueller, T., Avouris, P. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech 9, 780â793 (2014). https://doi.org/10.1038/nnano.2014.215
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2014.215
This article is cited by
-
Type-printable photodetector arrays for multichannel meta-infrared imaging
Nature Communications (2024)
-
Photogating-assisted tunneling boosts the responsivity and speed of heterogeneous WSe2/Ta2NiSe5 photodetectors
Nature Communications (2024)
-
Light-driven nanoscale vectorial currents
Nature (2024)
-
In-sensor dynamic computing for intelligent machine vision
Nature Electronics (2024)
-
Epitaxial growth of borophene on graphene surface towards efficient and broadband photodetector
Nano Research (2024)