Abstract
Nonlinear microscopy techniques developed over the past two decades have provided dramatic new capabilities for biological imaging. The initial demonstrations of nonlinear microscopies coincided with the development of solid-state femtosecond lasers, which continue to be the dominant light source for applications of nonlinear microscopy. Fibre lasers offer attractive features for biological and biomedical imaging, and recent advances are promising for the development of high-performance sources with the potential for realizing integrated instruments that are robust and inexpensive. This Review discusses recent advances, and identifies challenges and opportunities for fibre lasers in nonlinear bioimaging.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Change history
28 October 2013
In the version of this Review Article originally published online and in print, no competing financial interests were declared. However, the authors wish to acknowledge relevant patents. The competing financial interests statement in the HTML and PDF versions of the Review Article has been modified.
References
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73â76 (1990).
Yuste, R. & Denk, W. Dendritic spines as basic function units of neuronal integration. Nature 375, 682â684 (1995).
Williams, R. M., Piston, D. W. & Webb, W. W. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J. 8, 804â813 (1994).
Denk, W., Piston, D. W. & Webb, W. W. in The Handbook of Confocal Microscopy (ed. Pawley, J. B.) 445â458 (Plenum, 1995).
Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932â940 (2005).
Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763â10768 (1996).
Wokosin, D. L., Centonze, V. E., Crittenden, S. & White, J. Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser. Bioimaging 4, 208â214 (1996).
Hell, S. W. et al. Three-photon excitation in fluorescence microscopy. J. Biomed. Opt. 1, 71â74 (1996).
Campagnola, P. J., Wei, M.-D., Lewis, A. & Loew, L. M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341â3349 (1999).
Moreaux, L., Sandre, O. & Mertz, J. Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17, 1685â1694 (2000).
Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear laser scanning microscopy by third harmonic generation. Appl. Phys. Lett. 70, 922â924 (1997).
Müller, M., Squier, I., Wilson, K. R. & Brakenoff, G. I. 3D microscopy of transparent objects using third-harmonic generation. J. Microsc. 191, 266â274 (1998).
Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014â4017 (1999).
Jung, J. C. & Schnitzer, M. J. Multiphoton endoscopy. Opt. Lett. 28, 902â904 (2003).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780â782 (1994).
Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905â909 (2005).
Hoover, E. E. & Squier, J. A. Advances in multiphoton microscopy technology. Nature Photon. 7, 93â101 (2013).
Duncan, M. D., Reintjes, J. & Manuccia, T. J. Scanning coherent anti-stokes Raman microscope. Opt. Lett. 7, 350â352 (1982).
Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142â4145 (1999).
Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389â393 (2007).
Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857â1861 (2008).
Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42â44 (1991).
Negus, D. K., Spinelli, L., Goldblatt, N. & Feuget, G. Sub-100 fs pulse generation by Kerr lens modelocking in Ti: Al203 . in Tech. Digest OSA Top. Meet. Adv. Solid State Las. (OSA, 1991).
Aus der Au, J., Kopf, D., Morier-Genoud, F., Moser, M. & Keller, U. 60-fs pulses from a diode-pumped Nd:glass laser. Opt. Lett. 22, 307â309 (1997).
Hönninger, C. et al. Efficient and tunable diode-pumped femtosecond Yb: glass lasers. Opt. Lett. 23, 126â128 (1998).
Druon, F., Balembois, F. & Georges, P. Laser crystals for the production of ultrashort laser pulses. Ann. Chim. Sci. Mat. 28, 47â72 (2003).
Seas, A., PetriÄeviÄ, V. & Alfano, R. R. Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser. Opt. Lett. 17, 937â939 (1992).
Fermann, M. E., Galvanauskas, A., Sucha, G. & Harter, D. Fiber-lasers for ultrafast optics. Appl. Phys. B 65, 259â275 (1997).
Limpert, J., Roser, F., Schreiber, T. & Tunnermann, A. High-power ultrafast fiber laser systems. IEEE J. Sel. Top. Quant. Electron. 12, 233â244 (2006).
Ruehl, A., Wandt, D., Morgner, U. & Kracht, D. Normal dispersive ultrafast fiber oscillators. IEEE J. Sel. Top. Quant. Electron. 15, 170â181 (2009).
Fermann, M. & Hartl, I. Ultrafast fiber laser technology. IEEE J. Sel. Top. Quant. Electron. 15, 191â206 (2009).
Valdmanis, J. A., Fork, R. L. & Gordon, J. P. Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 10, 131â133 (1985).
Tamura, K., Ippen, E. P., Haus, H. A. & Nelson, L. E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080â1082 (1993).
Ober, M. H., Hofer, M. & Fermann, M. E. 42-fs pulse generation from a mode-locked fiber laser started with a moving mirror. Opt. Lett. 18, 367â369 (1993).
Chong, A., Buckley, J., Renninger, W. & Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095â10100 (2006).
Renninger, W. H., Chong, A. & Wise, F. W. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77, 023814 (2008).
Zhao, L. M., Tang, D. Y. & Wu, J. Gain-guided soliton in a positive group-dispersion fiber laser. Opt. Lett. 31, 1788â1790 (2006).
Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon. 6, 84â92 (2012).
Kieu, K., Renninger, W. H., Chong, A. & Wise, F. W. Sub-100-fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34, 593â595 (2009).
Chichkov, N. B. et al. Pulse duration and energy scaling of femtosecond all-normal dispersion fiber oscillators. Opt. Express 20, 3844â3852 (2012).
Chong, A., Renninger, W. H. & Wise, F. W. Properties of normal-dispersion femtosecond fiber lasers. J. Opt. Soc. Am. B 25, 140â148 (2008).
Renninger, W. H., Chong, A. & Wise, F. W. Self-similar pulse evolution in an all-normal-dispersion laser. Phys. Rev. A 82, 021805(R) (2010).
Wise, F. W. Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy. IEEE J. Sel. Top. Quant. Electron. 18, 1412â1421 (2012).
Oktem, B., Ãlgüdür, C. & Ilday, F. Ã. Solitonâsimilariton fibre laser. Nature Photon. 4, 307â311 (2010).
Liu, G., Kieu, K., Wise, F. W. & Chen, Z. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe. J. Biophotonics 4, 34â39 (2011).
Galvanauskas, A. Mode-scalable fiber-based chirped pulse amplification systems. IEEE J. Select Top. Quant. Electron 7, 504â517 (2001).
Lefrançois, S., Kieu, K., Deng, Y., Kafka, J. D. & Wise, F. W. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic-crystal fiber. Opt. Lett. 35, 1569â1571 (2010).
Baumgartl, M., Lecaplain, C., Hideur, A., Limpert, J. & Tunnerman, A. 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Opt. Lett. 37, 1640â1642 (2012).
Ramachandran, S. et al. Light propagation with ultralarge modal areas in optical fibers. Opt. Lett. 31, 1797â1799 (2006).
Nicholson, J. W. et al. Nanosecond pulse amplification in a 6000 μm2 effective area higher-order mode erbium-doped fiber amplifier. Paper JTh1I.2 in Proc. Conf. Lasers Electro Optics (OSA, 2012).
Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716â719 (1996).
Mostany, R. & Portera-Cailliau, C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. J. Neuroscience 31, 1734â1738 (2011).
Squirrell, J. M., Wokosin, D. L., White, J. G. & Bavister, B. D. Long-term two-photon fluorescence imaging of mammalian embryo without compromising viability. Nature Biotechnol. 17, 763â767 (1999).
Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl Acad. Sci. USA 100, 7075â7080 (2003).
So, P. T. C., Dong, C. Y., Masters, B. R. & Berland, K. M. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2, 399â429 (2000).
Centonze, V. E. & White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015â2024 (1998).
Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022â1024 (2003).
Leray, A., Odin, C., Huguet, E., Amblard, F. & Le Grand, Y. Spatially distributed two-photon excitation fluorescence in scattering media: experiments and time-resolved Monte Carlo simulations. Opt. Commun. 272, 269â278 (2007).
Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16, 106014 (2011).
Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354â13364 (2009).
Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt. 14, 010508 (2009).
Andresen, V. et al. Infrared multiphoton microscopy: subcellular resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54â62 (2009).
Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures of an intact mouse brain. Nature Photon 7, 205â209 (2009).
Maiti, S., Shear, J. B., Williams, R. M., Zipfel, W. R. & Webb, W. W. Measuring serotonin distribution in live cells with three-photon excitation. Science 275, 530â532 (1997).
Gordon, J. P. Theory of the soliton self-frequency shift. Opt. Lett. 11, 662â664 (1986).
Zysset, B., Beaud, P. & Hodel, W. Generation of optical solitons in the wavelength region 1.37â149 μm. Appl. Phys. Lett. 50, 1027â1029 (1987).
Liu, X. et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Opt. Lett. 26, 358â360 (2001).
Knight, J. C., Broeng, J., Birks, T. A. & Russell, P. St. J. Photonic band gap guidance in optical fibers. Science 282, 1476â1478 (1998).
Unruh, J. R. Two-photon microscopy with wavelength switchable fiber laser excitation. Opt. Express 14, 9825â9831 (2006).
Ouzounov, D. G. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702â1704 (2003).
Wang, K. & Xu, C. Tunable high-energy soliton pulse generation from a large-mode-area fiber and its application to third harmonic generation microscopy. Appl. Phys. Lett. 99, 071112 (2011).
Ganikhanov, F. Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 1292â1294 (2006).
Andresen, E. R., Nielsen, C. K., Thøgersen, J. & Keiding, S. R. Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy. Opt. Express 15, 4848â4856 (2007).
Krauss, G. et al. Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system. Opt. Lett. 34, 2847â2849 (2009).
Kieu, K. & Peyghambarian, N. Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy. Paper 790310 in SPIE BiOS (SPIE, 2011).
Mosley, P. J., Bateman, S. A., Lavoute, L. & Wadsworth, W. J. Low-noise, high-brightness, tunable source of picosecond pulsed light in the near-infrared and visible. Opt. Express 19, 25337â25345 (2011).
Baumgartl, M. et al. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing. Opt. Express 20, 21010â21018 (2012).
Lefrancois, S. et al. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 37, 1652â1654 (2012).
Zhai, Y.-H. et al. Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. Appl. Phys. Lett. 98, 191106 (2011).
Lamb, E. et al. Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy Opt. Lett. 38, 4154â4157 (2013).
Godil, A. A., Auld, B. A. & Bloom, D. M. Picosecond time-lenses. IEEE J. Quantum Electron. 30, 827â837 (1994).
Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951â1963 (1994).
Van Howe, J., Hansryd, J. & Xu, C. Multiwavelength pulse generator using time-lens compression. Opt. Lett. 29, 1470â1472 (2004).
Wang, K. et al. Synchronized time-lens source for coherent Raman scattering microscopy. Opt. Exp. 23, 24019â24024 (2010).
Wang, K. et al. Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. J. Biophotonics 6, 815â820 (2013).
Pedersen, M. E. V. et al. Higher-order-mode fiber optimized for energetic soliton propagation. Opt. Lett. 37, 3459â3461 (2012).
Olivié, G. et al. Wavelength dependence of femtosecond laser ablation threshold of corneal stroma. Opt. Express 16, 4121â4129 (2008).
Liu, C.-H. Paper ME2 Effectively single-mode chirally-coupled core fiber. Paper ME2 in Advanced Solid-State Photonics (OSA, 2007).
Acknowledgements
Portions of this work were supported by the National Institutes of Health (EB002019, R01CA133148, R01EB014873 and R21RR032392) and the National Science Foundation (ECCS-0901323, BIS-0967949).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
F.ÃÂ W. Wise is a named inventor on US patent US 8,416,817 B2 (publication date 04.09.2008, filing date 18.09.2007) and Chinese patent number 200780042670.8, which are related to the dissipative-soliton laser described in this Review Article. European patent application number 7873804.4 has been filed on the same subject. Wise has also submitted a patent application relating to picosecond-pulse sources for coherent anti-Stokes Raman microscopy (international patent PCT/US/2012/058817 (publication date 11.04.2013, filing date 04.10.2011).
Rights and permissions
About this article
Cite this article
Xu, C., Wise, F. Recent advances in fibre lasers for nonlinear microscopy. Nature Photon 7, 875â882 (2013). https://doi.org/10.1038/nphoton.2013.284
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.284
This article is cited by
-
Spectral-temporal-spatial customization via modulating multimodal nonlinear pulse propagation
Nature Communications (2024)
-
108Â fs high-power mode locked double-clad ytterbium-doped fiber laser using FePS3 saturable absorber
Optical and Quantum Electronics (2024)
-
Generation of Dual-Wavelength Optical DomainâWall DarkâBright Pulses by Composite Filtering Effects
Journal of Russian Laser Research (2024)
-
The bright prospects of optical solitons after 50 years
Nature Photonics (2023)
-
Neural network interatomic potential for laser-excited materials
Communications Materials (2023)