Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Connections of nicotine to cancer

Abstract

This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of nAChRs.
Figure 2: Hypothetical schemes of several carcinogenic mechanisms of nicotine action.

Similar content being viewed by others

References

  1. Hoffmann, D., Hoffmann, I. & El-Bayoumy, K. The less harmful cigarette: a controversial issue. a tribute to Ernst, L. Wynder. Chem. Res. Toxicol. 14, 767–790 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Talhout, R. et al. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Publ. Health 8, 613–628 (2011).

    Article  Google Scholar 

  3. Hecht, S. S. & Hoffmann, D. Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis 9, 875–884 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Hecht, S. S. et al. Quantification of urinary metabolites of a tobacco-specific lung carcinogen after smoking cessation. Cancer Res. 59, 590–596 (1999).

    CAS  PubMed  Google Scholar 

  5. Carmella, S. G., Borukhova, A., Desai, D. & Hecht, S. S. Evidence for endogenous formation of tobacco-specific nitrosamines in rats treated with tobacco alkaloids and sodium nitrite. Carcinogenesis 18, 587–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Caponnetto, P., Campagna, D., Papale, G., Russo, C. & Polosa, R. The emerging phenomenon of electronic cigarettes. Expert Rev. Respir. Med. 6, 63–74 (2012).

    Article  PubMed  Google Scholar 

  7. Bullen, C. et al. Electronic cigarettes for smoking cessation: a randomised controlled trial. Lancet 382, 1629–1637 (2013).

    Article  PubMed  Google Scholar 

  8. Frost-Pineda, K., Zedler, B. K., Liang, Q. & Roethig, H. J. Environmental tobacco smoke (ETS) evaluation of a third-generation electrically heated cigarette smoking system (EHCSS). Regul. Toxicol. Pharmacol. 52, 118–121 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, H. J. & Shin, H. S. Determination of tobacco-specific nitrosamines in replacement liquids of electronic cigarettes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1291, 48–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wessler, I. & Kirkpatrick, C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 154, 1558–1571 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grando, S. A., Pittelkow, M. R. & Schallreuter, K. U. Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J. Invest. Dermatol. 126, 1948–1965 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Improgo, M. R., Tapper, A. R. & Gardner, P. D. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer. Biochem. Pharmacol. 82, 1015–1021 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Singh, S., Pillai, S. & Chellappan, S. Nicotinic acetylcholine receptor signalling in tumour growth and metastasis. J. Oncol. 2011, 456743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Basu, S. et al. Role of nicotine in gallbladder carcinoma: a preliminary report. J. Dig. Dis. 13, 536–540 (2012).

    Article  PubMed  Google Scholar 

  15. Wu, C. H., Lee, C. H. & Ho, Y. S. Nicotinic acetylcholine receptor-based blockade: Applications of molecular target for cancer therapy. Clin. Cancer Res. 17, 3533–3541 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Calleja-Macias, I. et al. Association of single nucleotide polymorphisms of nicotinic acetylcholine receptor subunits with cervical neoplasia. Life Sci. 91, 1099–1102 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jensen, K., Afroze, S., Munshi, M. K., Guerrier, M. & Glaser, S. S. Mechanisms for nicotine in the development and progression of gastrointestinal cancers. Transl. Gastrointest. Cancer 1, 81–87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Russo, P., Cardinale, A., Margaritora, S. & Cesario, A. Nicotinic receptor and tobacco-related cancer. Life Sci. 91, 1087–1092 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Koukourakis, G. & Zacharias, G. Nicotine has implications in different tumours types. Expert's eye making a literature analysis. J. BUON 16, 210–214 (2011).

    CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Association of CHRNA5-A3-B4 variation with esophageal squamous cell carcinoma risk and smoking behaviours in a Chinese population. PLoS ONE 8, e67664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, H. et al. Is susceptibility locus for lung cancer in the 15q25 nicotinic acetylcholine receptor gene cluster CHRNA5-A3-B4 associated with risk of gastric cancer? Med. Oncol. 30, 576 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, P. N. & Hamling, J. Systematic review of the relation between smokeless tobacco and cancer in Europe and North America. BMC Med. 7, 36 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wickholm, S., Lahtinen, A., Ainamo, A. & Rautalahti, M. Adverse effects of Swedish smokeless tobacco “snus”. Duodecim 128, 1089–1096 (2012).

    PubMed  Google Scholar 

  24. Jacob, T., Clouden, N., Hingorani, A. & Ascher, E. The effect of cotinine on telomerase activity in human vascular smooth muscle cells. J. Cardiovasc. Surg. 50, 345–349 (2009).

    CAS  Google Scholar 

  25. Nakada, T. et al. Lung tumorigenesis promoted by anti-apoptotic effects of cotinine, a nicotine metabolite through activation of PI3K/Akt pathway. J. Toxicol. Sci. 37, 555–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Hukkanen, J., Jacob, P. 3rd & Benowitz, N. L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 57, 79–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Hecht, S. S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem. Res. Toxicol. 11, 559–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Arredondo, J., Chernyavsky, A. I. & Grando, S. A. Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamines on immortalized oral epithelial cells. Cancer Biol. Ther. 5, 511–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Arredondo, J., Chernyavsky, A. I. & Grando, S. A. The nicotinic receptor antagonists abolish pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J. Cancer Res. Clin. Oncol. 132, 653–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Grando, S. A. Basic and clinical aspects of non-neuronal acetylcholine: biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. J. Pharmacol. Sci. 106, 174–179 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Catassi, A., Servent, D., Paleari, L., Cesario, A. & Russo, P. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. Mutat. Res. 659, 221–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Ginzkey, C. et al. Nicotine induces DNA damage in human salivary glands. Toxicol. Lett. 184, 1–4 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Ginzkey, C. et al. Assessment of nicotine-induced DNA damage in a genotoxicological test battery. Mutat. Res. 751, 34–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Ginzkey, C. et al. Analysis of nicotine-induced DNA damage in cells of the human respiratory tract. Toxicol. Lett. 208, 23–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Galitovskiy, V., Chernyavsky, A. I., Edwards, R. A. & Grando, S. A. Muscle sarcomas and alopecia in A/J mice chronically treated with nicotine. Life Sci. 91, 1109–1112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nair, M. K., Chetty, D. J., Ho, H. & Chien, Y. W. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J. Pharm. Sci. 86, 257–262 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, L. L., Chetty, D. J. & Chien, Y. W. A mechanistic analysis to characterize oramucosal permeation properties. Int. J. Pharm. 184, 63–72 (1999).

    Article  PubMed  Google Scholar 

  38. Nielsen, H. M. & Rassing, M. R. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: effect of pH and concentration. Eur. J. Pharm. Sci. 16, 151–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Takami, K., Saito, H., Okuda, M., Takano, M. & Inui, K. I. Distinct characteristics of transcellular transport between nicotine and tetraethylammonium in LLC-PK1 cells. J. Pharmacol. Exp. Ther. 286, 676–680 (1998).

    CAS  PubMed  Google Scholar 

  40. Fukada, A., Saito, H. & Inui, K. Transport mechanisms of nicotine across the human intestinal epithelial cell line Caco-2. J. Pharmacol. Exp. Ther. 302, 532–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Yildiz, D., Liu, Y. S., Ercal, N. & Armstrong, D. W. Comparison of pure nicotine- and smokeless tobacco extract-induced toxicities and oxidative stress. Arch. Environ. Contam. Toxicol. 37, 434–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Argentin, G. & Cicchetti, R. Genotoxic and antiapoptotic effect of nicotine on human gingival fibroblasts. Toxicol. Sci. 79, 75–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Oreffo, V. I., Lin, H. W., Padmanabhan, R. & Witschi, H. K-ras and p53 point mutations in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced hamster lung tumours. Carcinogenesis 14, 451–455 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Mayer, B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch. Toxicol. 88, 5–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Sher, R. B., Cox, G. A., Mills, K. D. & Sundberg, J. P. Rhabdomyosarcomas in ageing A/J mice. PLoS ONE 6, e23498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sundberg, J. P. & Ichiki, T. in Handbook on genetically engineered mice (eds Sundberg, J. P. & Ichiki, T.) 223–229 (CRC Press, 2005).

    Book  Google Scholar 

  47. Hecht, S. S., Abbaspour, A. & Hoffman, D. A study of tobacco carcinogenesis. XLII. Bioassay in A/J mice of some structural analogues of tobacco-specific nitrosamines. Cancer Lett. 42, 141–145 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Fu, X. W., Lindstrom, J. & Spindel, E. R. Nicotine activates and upregulates nicotinic acetylcholine receptors in bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 41, 93–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Song, P. & Spindel, E. R. Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in lung cancer provides a new target for cancer therapy. J. Pharmacol. Sci. 106, 180–185 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Conti-Tronconi, B. M., McLane, K. E., Raftery, M. A., Grando, S. A. & Protti, M. P. The nicotinic acetylcholine receptor: structure and autoimmune pathology. Crit. Rev. Biochem. Mol. Biol. 29, 69–123 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Gerzanich, V. Wang, F., Kuryatov, A. & Lindstrom, J. α5 subunit alters desensitization, pharmacology, Ca2+ permeability and Ca2+ modulation of human neuronal α3 nicotinic receptors. J. Pharmacol. Exp. Ther. 286, 311–320 (1998).

    CAS  PubMed  Google Scholar 

  52. Vainio, P. J. & Tuominen, R. K. Cotinine binding to nicotinic acetylcholine receptors in bovine chromaffin cell and rat brain membranes. Nicotine Tob. Res. 3, 177–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. O'Leary, K., Parameswaran, N., McIntosh, J. M. & Quik, M. Cotinine selectively activates a subpopulation of α3/α6β2 nicotinic receptors in monkey striatum. J. Pharmacol. Exp. Ther. 325, 646–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Zia, S., Ndoye, A., Nguyen, V. T. & Grando, S. A. Nicotine enhances expression of the α3, α4, α5, and α7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res. Commun. Mol. Pathol. Pharmacol. 97, 243–262 (1997).

    CAS  PubMed  Google Scholar 

  55. Lam, D. C. et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res. 67, 4638–4647 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. West, K. A. et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J. Clin. Invest. 111, 81–90 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carlisle, D. L. et al. Nicotine activates cell-signalling pathways through muscle-type and neuronal nicotinic acetylcholine receptors in non-small cell lung cancer cells. Pulm. Pharmacol. Ther. 20, 629–641 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Arredondo, J. et al. Receptor-mediated tobacco toxicity: Regulation of gene expression through α3β2 nicotinic receptor in oral epithelial cells. Am. J. Pathol. 166, 597–613 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of α7 nicotinic receptor in oral keratinocytes. FASEB J. 20, 2093–2101 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: acceleration of sequential expression of α5 and α7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J. 22, 1356–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Davis, R. et al. Nicotine promotes tumour growth and metastasis in mouse models of lung cancer. PLoS ONE 4, e7524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schuller, H. M. Regulatory Role of the α7nAChR in Cancer. Curr. Drug Targets 13, 680–687 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Denda, M., Fujiwara, S. & Hibino, T. Expression of voltage-gated calcium channel subunit α1C in epidermal keratinocytes and effects of agonist and antagonists of the channel on skin barrier homeostasis. Exp. Dermatol. 15, 455–460 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Fucile, S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Fucile, S., Sucapane, A. & Eusebi, F. Ca2+ permeability through rat cloned α9-containing nicotinic acetylcholine receptors. Cell Calcium 39, 349–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Zia, S., Ndoye, A., Lee, T. X., Webber, R. J. & Grando, S. A. Receptor-mediated inhibition of keratinocyte migration by nicotine involves modulations of calcium influx and intracellular concentration. J. Pharmacol. Exp. Ther. 293, 973–981 (2000).

    CAS  PubMed  Google Scholar 

  67. Singh, G. S. Modification of acetylcholine action by bivalent cations on the perfused heart of the frog. Recent Adv. Stud Cardiac Struct. Metab. 7, 401–404 (1975).

    CAS  PubMed  Google Scholar 

  68. Sorimachi, M., Nishimura, S. & Yamagami, K. Inability of Ca2+ influx through nicotinic ACh receptor channels to stimulate catecholamine secretion in bovine adrenal chromaffin cells: studies with fura-2 and SBFI microfluorometry. Jpn J. Physiol. 44, 343–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I. & Grando, S. A. The Ras/Raf-1/MEK1/ERK signalling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J. Biol. Chem. 280, 39220–39228 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Chernyavsky, A. I., Arredondo, J., Marubio, L. M. & Grando, S. A. Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. J. Cell Sci. 117, 5665–5679 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Chernyavsky, A. I., Arredondo, J., Vetter, D. E. & Grando, S. A. Central role of α9 acetylcholine receptor in coordinating keratinocyte adhesion and motility at the initiation of epithelialization. Exp. Cell Res. 313, 3542–3555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsurutani, J. et al. Tobacco components stimulate Akt-dependent proliferation and NF{κ}B-dependent survival in lung cancer cells. Carcinogenesis 26 1182–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Tsai, J. R. et al. Mitogen-activated protein kinase pathway was significantly activated in human bronchial epithelial cells by nicotine. DNA Cell Biol. 25, 312–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Shi, D. et al. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signalling. PLoS ONE 7, e43898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nishioka, T. et al. Sensitization of epithelial growth factor receptors by nicotine exposure to promote breast cancer cell growth. Breast Cancer Res. 13, R113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: alterations of the NF-κB expression and activity downstream of α7 nicotinic receptor in oral keratinocytes. Life Sci. 80, 2191–2194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chernyavsky, A. I., Arredondo, J., Qian, J., Galitovskiy, V. & Grando, S. A. Coupling of ionic events to protein kinase signalling cascades upon activation of α7 nicotinic receptor: Cooperative regulation of α2-integrin expression and Rho-kinase activity. J. Biol. Chem. 284, 22140–22148 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Hoek, M. L., Allen, C. S. & Parsons, S. J. Phosphotyrosine phosphatase activity associated with c-Src in large multimeric complexes isolated from adrenal medullary chromaffin cells. Biochem. J. 326, 271–277 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signalling pathway. Nature Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  80. Kihara, T. et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3- kinase to block A β-amyloid-induced neurotoxicity. J. Biol. Chem. 276, 13541–13546 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, K. et al. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases. J. Biol. Chem. 279, 8779–8786 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Fischer, H., Liu, D. M., Lee, A., Harries, J. C. & Adams, D. J. Selective modulation of neuronal nicotinic acetylcholine receptor channel subunits by Go-protein subunits. J. Neurosci. 25, 3571–3577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dasgupta, P. et al. Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J. Clin. Invest. 116, 2208–2217 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chernyavsky, A. I., Arredondo, J., Piser, T., Karlsson, E. & Grando, S. A. Differential coupling of M1 muscarinic and α7 nicotinic receptors to inhibition of pemphigus acantholysis. J. Biol. Chem. 283, 3401–3408 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Wen, J., Fu, J. H., Zhang, W. & Guo, M. Lung carcinoma signalling pathways activated by smoking. Chin. J. Cancer 30, 551–558 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dajas-Bailador, F. & Wonnacott, S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol. Sci. 25, 317–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Schaal, C. & Chellappan, S. P. Nicotine-mediated cell proliferation and tumour progression in smoking-related cancers. Mol. Cancer Res. 12, 14–23 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dunckley, T. & Lukas, R. J. Nicotine modulates the expression of a diverse set of genes in the neuronal SH-SY5Y cell line. J. Biol. Chem. 278, 15633–15640 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Koshi, R., Sugano, N., Orii, H., Fukuda, T. & Ito, K. Microarray analysis of nicotine-induced changes in gene expression in a macrophage-like human cell line. J. Periodontal Res. 42, 518–526 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Grando, S. A. Cholinergic control of epidermal cohesion in norm and pathology. Exp. Dermatol. 15, 265–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Arredondo, J. et al. A receptor-mediated mechanism of nicotine toxicity in oral keratinocytes. Lab Invest. 81, 1653–1668 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Bavarva, J. H., Tae, H., Settlage, R. E. & Garner, H. R. Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS ONE 8, e67252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, D. et al. Intervention of nicotine on MNU-induced bladder cancer in rats. J. Huazhong Univ. Sci. Technolog. Med. Sci. 31, 103–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Cucina, A. et al. Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways. J. Surg. Res. 178, 233–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Iskandar, A. R. et al. β-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice. Cancer Prev. Res. 6, 309–320 (2013).

    Article  CAS  Google Scholar 

  96. Song, P. et al. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 63, 214–221 (2003).

    CAS  PubMed  Google Scholar 

  97. Lau, J. K. et al. Inhibition of cholinergic signalling causes apoptosis in human bronchioalveolar carcinoma. Cancer Res. 73, 1328–1339 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Brown, K. C. et al. Nicotine induces the upregulation of the α7-nicotinic receptor (α7-nAChR) in human squamous cell lung cancer cells via the Sp1/GATA pathway. J. Biol. Chem. 288, 33049–33059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, F. et al. Chronic nicotine treatment upregulates human α3β2 but not α3β4 acetylcholine receptors stably transfected in human embryonic kidney cells. J. Biol. Chem. 273, 28721–28732 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Morimoto, N., Takemoto, S., Kawazoe, T. & Suzuki, S. Nicotine at a low concentration promotes wound healing. J. Surg. Res. 145, 199–204 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Liem, P. H., Morimoto, N., Ito, R., Kawai, K. & Suzuki, S. Treating a collagen scaffold with a low concentration of nicotine promoted angiogenesis and wound healing. J. Surg. Res. 182, 353–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Jacobi, J. et al. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am. J. Pathol. 161, 97–104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Narla, S. T. et al. Activation of developmental nuclear fibroblast growth factor receptor 1 signalling and neurogenesis in adult brain by α7 nicotinic receptor agonist. Stem Cells Transl. Med. 2, 776–788 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mousa, S. & Mousa, S. A. Cellular and molecular mechanisms of nicotine's pro-angiogenesis activity and its potential impact on cancer. J. Cell. Biochem. 97, 1370–1378 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Mudo, G., Belluardo, N., Mauro, A. & Fuxe, K. Acute intermittent nicotine treatment induces fibroblast growth factor-2 in the subventricular zone of the adult rat brain and enhances neuronal precursor cell proliferation. Neuroscience 145, 470–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Belluardo, N. et al. Nicotine-induced fibroblast growth factor-2 restores the age-related decline of precursor cell proliferation in the subventricular zone of rat brain. Brain Res. 1193, 12–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Salimi, M. et al. Change in nicotine-induced VEGF, PGE2 and COX-2 expression following COX inhibition in human oral squamous cancer. J. Environ. Pathol. Toxicol. Oncol. 31, 349–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Moffett, J., Kratz, E. & Stachowiak, M. K. Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. Brain Res. Mol. Brain Res. 55, 293–305 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, K. C. et al. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 15, 99–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Baker, L. P. & Peng, H. B. Induction of acetylcholine receptor cluster formation by local application of growth factors in cultured Xenopus muscle cells. Neurosci. Lett. 185, 135–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Dai, Z. & Peng, H. B. The influence of basic fibroblast growth factor on acetylcholine receptors in cultured muscle cells. Neurosci. Lett. 144, 14–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Cucina, A. et al. Nicotine regulates basic fibroblastic growth factor and transforming growth factor β1 production in endothelial cells. Biochem. Biophys. Res. Commun. 257, 306–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Cucina, A. et al. Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-β 1. Surgery 127, 316–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. de Caestecker, M. P., Piek, E. & Roberts, A. B. Role of transforming growth factor-β signalling in cancer. J. Natl Cancer Inst. 92, 1388–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Khalil, A. A., Jameson, M. J., Broaddus, W. C., Lin, P. S. & Chung, T. D. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation. Brain Tumour Pathol. 30, 73–83 (2013).

    Article  CAS  Google Scholar 

  116. Lee, C. H. et al. Crosstalk between nicotine and oestrogen-induced oestrogen receptor activation induces α9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Res. Treat. 129, 331–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Schuller, H. M. Neurotransmission and cancer: implications for prevention and therapy. Anticancer Drugs 19, 655–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Nishioka, T. et al. Nicotine, through upregulating pro-survival signalling, cooperates with NNK to promote transformation. J. Cell Biochem. 109, 152–161 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Puliyappadamba, V. T. et al. Nicotine-induced survival signalling in lung cancer cells is dependent on their p53 status while its downregulation by curcumin is independent. Mol. Cancer 9, 220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Junhui, Z. et al. Nicotine-reduced endothelial progenitor cell senescence through augmentation of telomerase activity via the PI3K/Akt pathway. Cytotherapy 11, 485–491 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Berger, M. R. & Zeller, W. J. Interaction of nicotine with anticancer treatment. Klin. Wochenschr. 66 (Suppl. 11), 127–133 (1988).

    CAS  PubMed  Google Scholar 

  122. Warren, G. W. et al. Nicotinic modulation of therapeutic response in vitro and in vivo. Int. J. Cancer 131, 2519–2527 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Dinicola, S. et al. Nicotine increases survival in human colon cancer cells treated with chemotherapeutic drugs. Toxicol. In Vitro 27, 2256–2263 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Shen, T. et al. Nicotine induces resistance to chemotherapy in nasal epithelial cancer. Am. J. Rhinol. Allergy 24, e73–e77 (2010).

    Article  PubMed  Google Scholar 

  125. Banerjee, J., Al-Wadei, H. A. & Schuller, H. M. Chronic nicotine inhibits the therapeutic effects of gemcitabine on pancreatic cancer in vitro and in mouse xenografts. Eur. J. Cancer 49, 1152–1158 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Gergalova, G. et al. Mitochondria express α7 nicotinic acetylcholine receptors to regulate Ca2+ accumulation and cytochrome c release: study on isolated mitochondria. PLoS ONE 7, e31361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kalashnyk, O. M., Gergalova, G. L., Komisarenko, S. V. & Skok, M. V. Intracellular localization of nicotinic acetylcholine receptors in human cell lines. Life Sci. 91, 1033–1037 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Gergalova, G. Lykhmus, O., Komisarenko, S. & Skok, M. α7 Nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int. J. Biochem. Cell Biol. 49, 26–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Garrido, R., Mattson, M. P., Hennig, B. & Toborek, M. Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76, 1395–1403 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Yu, W. Mechawar, N., Krantic, S. & Quirion, R. α7 nicotinic receptor activation reduces β-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signalling. J. Neurochem. 119, 848–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Baldessarini, R. J. & Karobath, M. Biochemical physiology of central synapses. Annu. Rev. Physiol. 35, 273–304 (1973).

    Article  CAS  PubMed  Google Scholar 

  132. Dasgupta, P. et al. ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumours. J. Natl Cancer Inst. 103, 317–333 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lin, W., Hirata, N., Sekino, Y. & Kanda, Y. Role of α7-nicotinic acetylcholine receptor in normal and cancer stem cells. Curr. Drug Targets 13, 656–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Razani-Boroujerdi, S. & Sopori, M. L. Early manifestations of NNK-induced lung cancer: role of lung immunity in tumour susceptibility. Am. J. Respir. Cell. Mol. Biol. 36, 13–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Trevino, J. G. et al. Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 14, 1102–1114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, M. A. et al. Nicotine promotes acquisition of stem cell and epithelial-to-mesenchymal properties in head and neck squamous cell carcinoma. PLoS ONE 7, e51967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Guo, L. et al. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells. Biochim. Biophys. Acta 1822, 852–861 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Momi, N. et al. Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through α7nAChR-mediated MUC4 upregulation. Oncogene 32, 1384–95 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dasgupta, P. et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int. J. Cancer 124, 36–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wei, P. L. et al. Nicotine enhances colon cancer cell migration by induction of fibronectin. Ann. Surg. Oncol. 18, 1782–1790 (2011).

    Article  PubMed  Google Scholar 

  141. Costa, F. & Soares, R. Nicotine: a pro-angiogenic factor. Life Sci. 84, 785–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Lee, J. & Cooke, J. P. Nicotine and pathological angiogenesis. Life Sci. 91, 1058–1064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heeschen, C. et al. Nicotine stimulates angiogenesis and promotes tumour growth and atherosclerosis. Nature Med. 7, 833–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Natori, T. et al. Nicotine enhances neovascularization and promotes tumour growth. Mol. Cells 16, 143–146 (2003).

    CAS  PubMed  Google Scholar 

  145. Coppe, J. P. et al. A role for fibroblasts in mediating the effects of tobacco-induced epithelial cell growth and invasion. Mol. Cancer Res. 6, 1085–1098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Arredondo, J. et al. Central role of fibroblast α3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. Lab. Invest. 83, 207–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Topfer, K. et al. Tumour evasion from T cell surveillance. J. Biomed. Biotechnol. 2011, 918471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nouri-Shirazi, M. & Guinet, E. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination. J. Immunol. 188, 2359–2370 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. van Dijk, A. P. et al. Transdermal nicotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers. Eur. J. Clin. Invest. 28, 664–671 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Galitovskiy, V. et al. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of TH1/TH17- versus TH2-mediated colitis. J. Immunol. 187, 2677–2687 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Qian, J., Galitovskiy, V., Chernyavsky, A. I., Marchenko, S. & Grando, S. A. Plasticity of the murine spleen T-cell cholinergic receptors and their role in in vitro differentiation of naive CD4 T cells toward the TH1, TH2 and TH17 lineages. Genes Immun. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Ostrand-Rosenberg, S. Immune surveillance: a balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev. 18, 11–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Qiu, Y. H., Peng, Y. P., Jiang, J. L. & Wang, J. J. Effect of acetylcholine on in vitro IL-2 production and NK cell cytotoxicity of rats. Lymphology 37, 31–38 (2004).

    CAS  PubMed  Google Scholar 

  154. Hao, J. et al. Nicotinic receptor β2 determines NK cell-dependent metastasis in a murine model of metastatic lung cancer. PLoS ONE 8, e57495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Levy, E. M., Roberti, M. P. & Mordoh, J. Natural killer cells in human cancer: from biological functions to clinical applications. J. Biomed. Biotechnol. 2011, 676198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jiang, J. L., Qiu, Y. H. & Peng, Y. P. Effect of acetylcholine on the cytotoxicity of natural killer cells. Zhongguo Ying Yong Sheng Li Xue Za Zhi 21, 330–333 (in Chinese) (2005).

    CAS  PubMed  Google Scholar 

  157. Improgo, M. R., Soll, L. G., Tapper, A. R. & Gardner, P. D. Nicotinic acetylcholine receptors mediate lung cancer growth. Front. Physiol. 4, 251 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shih, Y. L. et al. Combination treatment with luteolin and quercetin enhances antiproliferative effects in nicotine-treated MDA-MB-231 cells by downregulating nicotinic acetylcholine receptors. J. Agr. Food Chem. 58, 235–241 (2010).

    Article  CAS  Google Scholar 

  159. Tu, S. H. et al. Tea polyphenol (-)-epigallocatechin- 3-gallate inhibits nicotine- and oestrogen-induced α9-nicotinic acetylcholine receptor upregulation in human breast cancer cells. Mol. Nutr. Food Res. 55, 455–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Catassi, A. et al. Targeting α7-nicotinic receptor for the treatment of pleural mesothelioma. Eur. J. Cancer 44, 2296–2311 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Grozio, A. et al. Natural agents targeting the α7-nicotinic-receptor in NSCLC: a promising prospective in anticancer drug development. Int. J. Cancer 122, 1911–1915 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Paleari, L. et al. Inhibition of nonneuronal α7-nicotinic receptor for lung cancer treatment. Am. J. Respir. Crit. Care Med. 179, 1141–1150 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Paleari, L. et al. Inhibition of non-neuronal α7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts. Int. J. Cancer 125, 199–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Kintz, P., Henrich, A., Cirimele, V. & Ludes, B. Nicotine monitoring in sweat with a sweat patch. J. Chromatogr. B Biomed. Sci. Appl. 705, 357–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  165. Ortiz, A. & Grando, S. A. Smoking and the skin. Int. J. Dermatol. 51, 250–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Benoni, C. & Nilsson, A. Smoking habits in patients with inflammatory bowel disease. Scand. J. Gastroenterol. 19, 824–830 (1984).

    Article  CAS  PubMed  Google Scholar 

  167. Rubin, D. T. & Hanauer, S. B. Smoking and inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol 12, 855–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Marakoglu, K., Sezer, R. E., Toker, H. C. & Marakoglu, I. The recurrent aphthous stomatitis frequency in the smoking cessation people. Clin. Oral Investig. 11, 149–153 (2007).

    Article  PubMed  Google Scholar 

  169. Calabrese, E., Yanai, H., Shuster, D., Rubin, D. T. & Hanauer, S. B. Low-dose smoking resumption in ex-smokers with refractory ulcerative colitis. J. Crohns Colitis 6, 756–762 (2012).

    Article  PubMed  Google Scholar 

  170. Pullan, R. D. et al. Transdermal nicotine for active ulcerative colitis. New Engl. J. Med. 330, 811–815 (1994).

    Article  CAS  PubMed  Google Scholar 

  171. Hill, S. C., Stavrakoglou, A. & Coutts, I. R. Nicotine replacement therapy as a treatment for complex aphthosis. J. Dermatolog. Treat. 21, 317–318 (2010).

    Article  PubMed  Google Scholar 

  172. Rizvi, S. W. & McGrath, H. Jr. The therapeutic effect of cigarette smoking on oral/genital aphthosis and other manifestations of Behcet's disease. Clin. Exp. Rheumatol. 19, S77–78 (2001).

    CAS  PubMed  Google Scholar 

  173. Scheid, P., Bohadana, A. & Martinet, Y. Nicotine patches for aphthous ulcers due to Behcet's syndrome. N. Engl. J. Med. 343, 1816–1817 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Kawabata, H. et al. Successful treatment of digital ulceration in Buerger's disease with nicotine chewing gum. Br. J. Dermatol. 140, 187–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Kanekura, T. & Kanzaki, T. Successful treatment of pyoderma gangrenosum with nicotine chewing gum. J. Dermatol. 22, 704–705 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Kanekura, T., Usuki, K. & Kanzaki, T. Nicotine for pyoderma gangrenosum. Lancet 345, 1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  177. Kaklamani, V. G., Markomichelakis, N. & Kaklamanis, P. G. Could nicotine be beneficial for Behcet's disease? Clin. Rheumatol. 21, 341–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Westerman, R. A., Carr, R. W., Delaney, C. A., Morris, M. J. & Roberts, R. G. The role of skin nociceptive afferent nerves in blister healing. Clin. Exp. Neurol. 30, 39–60 (1993).

    CAS  PubMed  Google Scholar 

  179. Kawashima, K. et al. Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci. 80, 2206–2209 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Wessler, I., Kirkpatrick, C. J. & Racke, K. The cholinergic 'pitfall': acetylcholine, a universal cell molecule in biological systems, including humans. Clin. Exp. Pharmacol. Physiol. 26, 198–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Kaur-Knudsen, D., Bojesen, S. E., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Nicotinic acetylcholine receptor polymorphism, smoking behaviour, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study. J. Clin. Oncol. 29, 2875–2882 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Amos, C. I. et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nature Genet. 40, 616–622 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Shiraishi, K. et al. Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis 30, 65–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, X. et al. Association of smoking with tumour size at diagnosis in non-small cell lung cancer. Lung Cancer 74, 378–383 (2011).

    Article  PubMed  Google Scholar 

  185. Shen, B. et al. Correlation between polymorphisms of nicotine acetylcholine acceptor subunit CHRNA3 and lung cancer susceptibility. Mol. Med. Rep. 6, 1389–1392 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Wei, C. et al. A case-control study of a sex-specific association between a 15q25 variant and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 20, 2603–2609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhang, X. B. et al. Human chromosome 8p11 (CHRNB3-CHRNA6) region gene polymorphisms and susceptibility to lung cancer in Chinese Han population. Yi Chuan 33, 886–894 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Chikova, A. & Grando, S. A. Naturally occurring variants of human α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation. PLoS ONE 6, e27978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zheng, X. et al. Functionally significant nicotine acetylcholine receptor subunit α5 promoter haplotypes are associated with susceptibility to lung cancer in Chinese. Cancer 117, 4714–4723 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Charpantier, E. et al. α7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases. J. Neurosci. 25, 9836–9849 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Warren, G. W. & Singh, A. K. Nicotine and lung cancer. J. Carcinog. 12, 1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Learning about density of nicotine in e-cigarette. Electronic Cigarette Report [online], (2012).

Download references

Acknowledgements

The author's work on this article was supported by the grant R01ES017009 from the US National Institutes of Health, GRANT10997075 from the US Department of Defense and a research grant from the American Lung Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei A. Grando.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grando, S. Connections of nicotine to cancer. Nat Rev Cancer 14, 419–429 (2014). https://doi.org/10.1038/nrc3725

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3725

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer