Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Control of cancer formation by intrinsic genetic noise and microenvironmental cues

Abstract

Differentiation therapies that induce malignant cells to stop growing and revert to normal tissue-specific differentiated cell types are successful in the treatment of a few specific haematological tumours. However, this approach has not been widely applied to solid tumours because their developmental origins are less well understood. Recent advances suggest that understanding tumour cell plasticity and how intrinsic factors (such as genetic noise and microenvironmental signals, including physical cues from the extracellular matrix) govern cell state switches will help in the development of clinically relevant differentiation therapies for solid cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intrinsic noise gives rise to heterogeneous tumour populations.
Figure 2: Simulated intrinsic noise and extrinsic variation in cell hyperproliferation.
Figure 3: Cell intrinsic variation factors as a source of cancer cell plasticity.
Figure 4: Extrinsic cues contributing to cancer cell plasticity and reversion.

Similar content being viewed by others

References

  1. Yamanaka, S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 41 (Suppl. 1), 51–56 (2008).

    PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).

    CAS  PubMed  Google Scholar 

  8. Celia-Terrassa, T. et al. Epithelial–mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsuji, T., Ibaragi, S. & Hu, G. F. Epithelial–mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 69, 7135–7139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mroz, E. A. et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119, 3034–3042 (2013).

    PubMed  Google Scholar 

  11. Merlo, L. M. et al. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 3, 1388–1397 (2010).

    Google Scholar 

  12. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  13. Polyak, K. Heterogeneity in breast cancer. J. Clin. Invest. 121, 3786–3788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  PubMed  Google Scholar 

  16. Pisco, A. O. et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun. 4, 2467 (2013).

    PubMed  Google Scholar 

  17. Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701 (2005).

    PubMed  Google Scholar 

  18. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pierce, G. B. & Wallace, C. Differentiation of malignant to benign cells. Cancer Res. 31, 127–134 (1971).

    CAS  PubMed  Google Scholar 

  21. Lee, G. Y. et al. Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. Int. J. Hematol. 93, 27–35 (2011).

    PubMed  Google Scholar 

  22. Charles, N. et al. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6, 141–152 (2010).

    CAS  PubMed  Google Scholar 

  23. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoek, K. S. & Goding, C. R. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746–759 (2010).

    CAS  PubMed  Google Scholar 

  25. Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141, 583–594 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Almendro, V. et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6, 514–527 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, Y., Eichler, G. S., Feng, Y., Ingber, D. E. & Huang, S. Towards a holistic, yet gene-centered analysis of gene expression profiles: a case study of human lung cancers. J. Biomed. Biotechnol. 2006, 69141 (2006).

    PubMed  PubMed Central  Google Scholar 

  28. Huang, S. & Ingber, D. E. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261, 91–103 (2000).

    CAS  PubMed  Google Scholar 

  29. Huang, S. & Ingber, D. E. A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis. 26, 27–54 (2006).

    CAS  PubMed  Google Scholar 

  30. Kauffman, S. Differentiation of malignant to benign cells. J. Theor. Biol. 31, 429–451 (1971).

    CAS  PubMed  Google Scholar 

  31. Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity — a mutation-independent driving force for the somatic evolution of tumours. Nat. Rev. Genet. 10, 336–342 (2009).

    CAS  PubMed  Google Scholar 

  32. Flusberg, D. A., Roux, J., Spencer, S. L. & Sorger, P. K. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol. Biol. Cell 24, 2186–2200 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ingber, D. E. Tensegrity, I. I. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408 (2003).

    CAS  PubMed  Google Scholar 

  35. Kauffman, S. Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969).

    CAS  PubMed  Google Scholar 

  36. Waddington, C. The Strategy of the Genes (Allen and Unwin, 1957).

    Google Scholar 

  37. Hoffmann, M. et al. Noise-driven stem cell and progenitor population dynamics. PLoS ONE 3, e2922 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Werfel, J. et al. How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. PLoS ONE 8, e76122 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kauffman, S. A. The Origins of Order (Oxford Univ. Press, 1993).

    Google Scholar 

  40. Huang, S. & Ingber, D. E. A discrete cell cycle checkpoint in late G(1) that is cytoskeleton-dependent and MAP kinase (Erk)-independent. Exp. Cell Res. 275, 255–264 (2002).

    CAS  PubMed  Google Scholar 

  41. Murphy, D. Gene expression studies using microarrays: principles, problems, and prospects. Adv. Physiol. Educ. 26, 256–270 (2002).

    PubMed  Google Scholar 

  42. Brock, A., Huang, S. & Ingber, D. E. Identification of a distinct class of cytoskeleton-associated mRNAs using microarray technology. BMC Cell Biol. 4, 6 (2003).

    PubMed  PubMed Central  Google Scholar 

  43. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    CAS  PubMed  Google Scholar 

  44. Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanash, K. A. Metastatic tumors to the testicles. Prog. Clin. Biol. Res. 203, 61–67 (1985).

    CAS  PubMed  Google Scholar 

  46. Ohm, J. E. et al. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res. 70, 7662–7673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brock, A. et al. Cellular reprogramming: a new technology frontier in pharmaceutical research. Pharm. Res. 29, 35–52 (2012).

    CAS  PubMed  Google Scholar 

  48. West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102 (Suppl. 1), 6543–6549 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schedin, P. & Keely, P. J. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).

    PubMed  PubMed Central  Google Scholar 

  50. Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Cancer Biol. 18, 356–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    CAS  PubMed  Google Scholar 

  52. Vidal, M., Larson, D. E. & Cagan, R. L. Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev. Cell 10, 33–44 (2006).

    CAS  PubMed  Google Scholar 

  53. Vidal, M. et al. A role for the epithelial microenvironment at tumor boundaries: evidence from Drosophila and human squamous cell carcinomas. Am. J. Pathol. 176, 3007–3014 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Leung, C. T. & Brugge, J. S. Outgrowth of single oncogene-expressing cells from suppressive epithelial environments. Nature 482, 410–413 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  57. Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A. & Sonnenschein, C. The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 117, 1495–1502 (2004).

    CAS  PubMed  Google Scholar 

  58. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  59. Jamieson, J. D. et al. Cell surface properties of normal, differentiating, and neoplastic pancreatic acinar cells. Cancer 47, 1516–1527 (1981).

    CAS  PubMed  Google Scholar 

  60. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Boyd, N. et al. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol. 10, 569–580 (2009).

    PubMed  Google Scholar 

  62. dos Santos Silva, I. et al. The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 15, 449–455 (2006).

    CAS  PubMed  Google Scholar 

  63. Provenzano, P. P. et al. Collagen density promotes mammary tumor initiation and progression. BMC Med. 6, 11 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  PubMed  Google Scholar 

  67. Mouw, J. K. et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20, 360–367 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, S. et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2, 78–91 (2014).

    CAS  Google Scholar 

  69. Conley, S. J. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl Acad. Sci. USA 109, 2784–2789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Biddle, A. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71, 5317–5326 (2011).

    CAS  PubMed  Google Scholar 

  71. Supernat, A. et al. Epithelial–mesenchymal transition and cancer stem cells in endometrial cancer. Anticancer Res. 33, 5461–5469 (2013).

    CAS  PubMed  Google Scholar 

  72. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Thompson, E. W. & Haviv, I. The social aspects of EMT–MET plasticity. Nat. Med. 17, 1048–1049 (2011).

    CAS  PubMed  Google Scholar 

  74. Goel, S., Wong, A. H. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. 2, a006486 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Beck, B. et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399–403 (2011).

    CAS  PubMed  Google Scholar 

  78. Cao, Z. et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25, 350–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Braun, A. C. & Wood, H. N. Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues, and organs of crown gall teratomas of tobacco. Proc. Natl Acad. Sci. USA 73, 496–500 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rangecroft, L., Lauder, I. & Wagget, J. Spontaneous maturation of stage IV–S neuroblastoma. Arch. Dis. Child 53, 815–817 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Stewart, T. A. & Mintz, B. Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells. Proc. Natl Acad. Sci. USA 78, 6314–6318 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Coleman, W. B., Wennerberg, A. E., Smith, G. J. & Grisham, J. W. Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol. 142, 1373–1382 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. McCullough, K. D., Coleman, W. B., Smith, G. J. & Grisham, J. W. Age-dependent induction of hepatic tumor regression by the tissue microenvironment after transplantation of neoplastically transformed rat liver epithelial cells into the liver. Cancer Res. 57, 1807–1813 (1997).

    CAS  PubMed  Google Scholar 

  85. McCullough, K. D. et al. Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors. Proc. Natl Acad. Sci. USA 95, 15333–15338 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Booth, B. W., Boulanger, C. A., Anderson, L. H. & Smith, G. H. The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 30, 679–689 (2011).

    CAS  PubMed  Google Scholar 

  87. DeCosse, J. J., Gossens, C. L., Kuzma, J. F. & Unsworth, B. R. Breast cancer: induction of differentiation by embryonic tissue. Science 181, 1057–1058 (1973).

    CAS  PubMed  Google Scholar 

  88. Wong, Y. C., Cunha, G. R. & Hayashi, N. Effects of mesenchyme of the embryonic urogenital sinus and neonatal seminal vesicle on the cytodifferentiation of the Dunning tumor: ultrastructural study. Acta Anat. 143, 139–150 (1992).

    CAS  PubMed  Google Scholar 

  89. Chung, L. W., Zhau, H. E. & Ro, J. Y. Morphologic and biochemical alterations in rat prostatic tumors induced by fetal urogenital sinus mesenchyme. Prostate 17, 165–174 (1990).

    CAS  PubMed  Google Scholar 

  90. Watanabe, T. K., Hansen, L. J., Reddy, N. K., Kanwar, Y. S. & Reddy, J. K. Differentiation of pancreatic acinar carcinoma cells cultured on rat testicular seminiferous tubular basement membranes. Cancer Res. 44, 5361–5368 (1984).

    CAS  PubMed  Google Scholar 

  91. Cunha, G. R. et al. Epithelial–mesenchymal interactions in prostatic development. I. morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. J. Cell Biol. 96, 1662–1670 (1983).

    CAS  PubMed  Google Scholar 

  92. Hendrix, M. J. et al. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7, 246–255 (2007).

    CAS  PubMed  Google Scholar 

  93. Kenny, P. A. & Bissell, M. J. Tumor reversion: correction of malignant behavior by microenvironmental cues. Int. J. Cancer 107, 688–695 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Xie, J. W. & Haslam, S. Z. Extracellular matrix, Rac1 signaling, and estrogen-induced proliferation in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 110, 257–268 (2008).

    CAS  PubMed  Google Scholar 

  95. Neubauer, H. et al. A laminin-rich basement membrane matrix influences estrogen receptor β expression and morphology of MDA-MB-231 breast cancer cells. Oncol. Rep. 21, 475–481 (2009).

    CAS  PubMed  Google Scholar 

  96. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McKinnell, R. G., Deggins, B. A. & Labat, D. D. Transplantation of pluripotential nuclei from triploid frog tumors. Science 165, 394–396 (1969).

    CAS  PubMed  Google Scholar 

  98. Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309, 552–556 (1984).

    CAS  PubMed  Google Scholar 

  99. Lee, L. M., Seftor, E. A., Bonde, G., Cornell, R. A. & Hendrix, M. J. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev. Dyn. 233, 1560–1570 (2005).

    CAS  PubMed  Google Scholar 

  100. Topczewska, J. M. et al. Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat. Med. 12, 925–932 (2006).

    CAS  PubMed  Google Scholar 

  101. Kulesa, P. M. et al. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc. Natl Acad. Sci. USA 103, 3752–3757 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    CAS  PubMed  Google Scholar 

  103. Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999).

    CAS  PubMed  Google Scholar 

  104. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    CAS  PubMed  Google Scholar 

  105. Nerlov, C., Querfurth, E., Kulessa, H. & Graf, T. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95, 2543–2551 (2000).

    CAS  PubMed  Google Scholar 

  106. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mack, S. C. et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506, 445–450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    CAS  PubMed  Google Scholar 

  111. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Parker, M. et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506, 451–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang, H. & Declerck, Y. A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 73, 4965–4977 (2013).

    CAS  PubMed  Google Scholar 

  116. Neesse, A. et al. Stromal biology and therapy in pancreatic cancer. Gut 60, 861–868 (2011).

    PubMed  Google Scholar 

  117. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xiao, Q. & Ge, G. Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron. 5, 261–273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Fingleton, B. Matrix metalloproteinases: roles in cancer and metastasis. Front. Biosci. 11, 479–491 (2006).

    CAS  PubMed  Google Scholar 

  124. Bischof, A. G. et al. Breast cancer normalization induced by embryonic mesenchyme is mediated by extracellular matrix biglycan. Integr. Biol. 5, 1045–1056 (2013).

    CAS  Google Scholar 

  125. Heinaniemi, M. et al. Gene-pair expression signatures reveal lineage control. Nat. Methods 10, 577–583 (2013).

    PubMed  PubMed Central  Google Scholar 

  126. di Bernardo, D. et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotech. 23, 377–383 (2005).

    CAS  Google Scholar 

  127. Brock, A. et al. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci. Transl Med. 6, 217ra2 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Ergun, A., Lawrence, C. A., Kohanski, M. A., Brennan, T. A. & Collins, J. J. A network biology approach to prostate cancer. Mol. Syst. Biol. 3, 82 (2007).

    PubMed  PubMed Central  Google Scholar 

  129. Huang, S. The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology? Bioessays 34, 149–157 (2012).

    CAS  PubMed  Google Scholar 

  130. Xing, F., Saidou, J. & Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front. Biosci. (Landmark Ed.) 15, 166–179 (2010).

    CAS  Google Scholar 

  131. De Wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008).

    CAS  PubMed  Google Scholar 

  132. Cucina, A. et al. Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2). Apoptosis 11, 1617–1628 (2006).

    CAS  PubMed  Google Scholar 

  133. Allegrucci, C. et al. Epigenetic reprogramming of breast cancer cells with oocyte extracts. Mol. Cancer 10, 7 (2011).

    PubMed  PubMed Central  Google Scholar 

  134. Cooper, M. & Pinkus, H. Intrauterine transplantation of rat basal cell carcinoma as a model for reconversion of malignant to benign growth. Cancer Res. 37, 2544–2552 (1977).

    CAS  PubMed  Google Scholar 

  135. Krause, S., Maffini, M. V., Soto, A. M. & Sonnenschein, C. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer 10, 263 (2010).

    PubMed  PubMed Central  Google Scholar 

  136. Trimboli, A. J. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Maffini, M. V., Calabro, J. M., Soto, A. M. & Sonnenschein, C. Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am. J. Pathol. 167, 1405–1410 (2005).

    PubMed  PubMed Central  Google Scholar 

  138. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl Acad. Sci. USA 108, 4274–4280 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Breitman, T. R., Selonick, S. E. & Collins, S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl Acad. Sci. USA 77, 2936–2940 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  PubMed  Google Scholar 

  141. Kang, Y. & Massague, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).

    CAS  PubMed  Google Scholar 

  142. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Johnson of Boston Children's Hospital for assistance with figure preparation. This work was supported by a Breast Cancer Research Foundation Translational Research Grant (14-60-26-BROC) to A.B., and a Department of Defense Breast Cancer Innovator Award (BC074986) to D.E.I. The authors apologize to the many people whose work we could not cite owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Competing interests

S.K. holds equity in Momenta Pharmaceuticals and D.E.I. consults to Momenta Pharmaceuticals, SynDevRx Inc. and Celgene Cellular Therapeutics, on work unrelated to the material included here. A.B. declares no competing interests as defined by Nature Publishing Group or other interests that might be perceived to influence the interpretation of the article.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Ongoing clinical trials phase I to III targeting tumor microenvironment (interventional) (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brock, A., Krause, S. & Ingber, D. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer 15, 499–509 (2015). https://doi.org/10.1038/nrc3959

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3959

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer