Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Glycosylation in cancer: mechanisms and clinical implications

Key Points

  • Glycosylation is a key cellular mechanism regulating several physiological and pathological functions. Alterations in glycoproteins, glycosphingolipids and proteoglycans are common features of cancer cells.

  • The most-widely occurring cancer-associated changes in protein glycosylation are increased sialylation, increased branched-glycan structures and overexpression of 'core' fucosylation.

  • The overexpression of branched-N-glycan structures interferes with epithelial cadherin-mediated cell–cell adhesion, promoting tumour cell dissociation and invasion.

  • Modifications of integrins with branched N-glycans, truncated O-glycans and/or sialylated structures modulate tumour cell–matrix interactions, fostering the process of tumour cell migration.

  • Altered expression of proteoglycans and their glycosaminoglycan chains interfere with extracellular signalling molecules and modulate the activation of tyrosine kinase protein receptors.

  • Altered glycosylation of growth factor receptors and the modified expression of gangliosides affect cancer cell signal transduction pathways, modulating tumour cell growth and proliferation.

  • Glycans and their corresponding endogenous carbohydrate-recognition lectins are key regulators of the inflammation and immune response towards the tumour cells.

  • Several serological markers currently used in the clinic are based on the detection of circulating glycoproteins or glycoconjugates with altered glycosylation.

  • Glycans have major potential applications in improving early diagnosis, determination of prognosis and risk stratification, as well as in serving as markers of specific therapeutic targets.

Abstract

Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell–matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common classes of glycoconjugates in mammalian cells.
Figure 2: Schematic representation of important glycan structures.
Figure 3: Important tumour-associated glycans.
Figure 4: Role of glycans in cancer development and progression.

Similar content being viewed by others

References

  1. Fuster, M. M. & Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hakomori, S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc. Natl Acad. Sci. USA 99, 10231–10233 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reis, C. A., Osorio, H., Silva, L., Gomes, C. & David, L. Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Taniguchi, N., Hancock, W., Lubman, D. M. & Rudd, P. M. The second golden age of glycomics: from functional glycomics to clinical applications. J. Proteome Res. 8, 425–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Pinho, S. S. et al. Gastric cancer: adding glycosylation to the equation. Trends Mol. Med. 19, 664–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Freeze, H. H. Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 288, 6936–6945 (2013). This Review describes the genetic and biochemical advances in the diagnosis of several inherited human glycosylation disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Varki, A. et al. (eds) Essentials of Glycobiology 2nd edn (Cold Spring Harbor Laboratory Press, 2009).

    Google Scholar 

  9. Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gabius, H. J., Andre, S., Jimenez-Barbero, J., Romero, A. & Solis, D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem. Sci. 36, 298–313 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Moremen, K. W., Tiemeyer, M. & Nairn, A. V. Vertebrate protein glycosylation: diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 13, 448–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012). This article reports on the biological function of the polypeptide GalNAc transferase gene family, the largest glycosyltransferase enzyme family.

    Article  CAS  PubMed  Google Scholar 

  13. Clausen, H. & Bennett, E. P. A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6, 635–646 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Brockhausen, I., Yang, J., Lehotay, M., Ogata, S. & Itzkowitz, S. Pathways of mucin O-glycosylation in normal and malignant rat colonic epithelial cells reveal a mechanism for cancer-associated sialyl-Tn antigen expression. Biol. Chem. 382, 219–232 (2001). This Review describes the pathways of mucin-type O -glycosylation.

    CAS  PubMed  Google Scholar 

  15. Ma, J. & Hart, G. W. O-GlcNAc profiling: from proteins to proteomes. Clin. Proteomics 11, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Luther, K. B. & Haltiwanger, R. S. Role of unusual O-glycans in intercellular signaling. Int. J. Biochem. Cell Biol. 41, 1011–1024 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Julien, S., Bobowski, M., Steenackers, A., Le Bourhis, X. & Delannoy, P. How do gangliosides regulate RTKs signaling? Cells 2, 751–767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ladenson, R. P., Schwartz, S. O. & Ivy, A. C. Incidence of the blood groups and the secretor factor in patients with pernicious anemia and stomach carcinoma. Am. J. Med. Sci. 217, 194–197 (1949).

    Article  CAS  PubMed  Google Scholar 

  19. Hakomori, S. I. & Murakami, W. T. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl Acad. Sci. USA 59, 254–261 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feizi, T. Carbohydrate antigens in human cancer. Cancer Surv. 4, 245–269 (1985).

    CAS  PubMed  Google Scholar 

  21. Holmes, E. H., Ostrander, G. K., Clausen, H. & Graem, N. Oncofetal expression of Lex carbohydrate antigens in human colonic adenocarcinomas. Regulation through type 2 core chain synthesis rather than fucosylation. J. Biol. Chem. 262, 11331–11338 (1987).

    CAS  PubMed  Google Scholar 

  22. Hakomori, S. & Kannagi, R. Glycosphingolipids as tumor-associated and differentiation markers. J. Natl Cancer Inst. 71, 231–251 (1983).

    CAS  PubMed  Google Scholar 

  23. Marcos, N. T. et al. ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Front. Biosci. (Elite Ed.) 3, 1443–1455 (2011).

    Google Scholar 

  24. Julien, S. et al. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 16, 54–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Kannagi, R., Yin, J., Miyazaki, K. & Izawa, M. Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants—Hakomori's concepts revisited. Biochim. Biophys. Acta 1780, 525–531 (2008). This Review describes the incomplete synthesis and neo-synthesis processes as two major concepts for cancer-associated alterations of cell-surface carbohydrate determinants.

    Article  CAS  PubMed  Google Scholar 

  26. Buckhaults, P., Chen, L., Fregien, N. & Pierce, M. Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J. Biol. Chem. 272, 19575–19581 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Hatano, K., Miyamoto, Y., Nonomura, N. & Kaneda, Y. Expression of gangliosides, GD1a, and sialyl paragloboside is regulated by NF-κB-dependent transcriptional control of α2,3-sialyltransferase I, II, and VI in human castration-resistant prostate cancer cells. Int. J. Cancer 129, 1838–1847 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Pinho, S. S. et al. Loss and recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation is a mechanism involved in epithelial-mesenchymal-epithelial transitions. PLoS ONE 7, e33191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schietinger, A. et al. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314, 304–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Aryal, R. P., Ju, T. & Cummings, R. D. The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J. Biol. Chem. 285, 2456–2462 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Kakugawa, Y. et al. Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc. Natl Acad. Sci. USA 99, 10718–10723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumamoto, K. et al. Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen-Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res. 61, 4620–4627 (2001).

    CAS  PubMed  Google Scholar 

  33. Kellokumpu, S., Sormunen, R. & Kellokumpu, I. Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett. 516, 217–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Gill, D. J., Chia, J., Senewiratne, J. & Bard, F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J. Cell Biol. 189, 843–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brockhausen, I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep. 7, 599–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marcos, N. T. et al. Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 64, 7050–7057 (2004). This study demonstrates that ST6GalNAc-I is responsible for the biosynthesis of the STn antigen in gastric cancer cells.

    Article  CAS  PubMed  Google Scholar 

  37. Roth, J., Wang, Y., Eckhardt, A. E. & Hill, R. L. Subcellular localization of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-mediated O-glycosylation reaction in the submaxillary gland. Proc. Natl Acad. Sci. USA 91, 8935–8939 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sewell, R. et al. The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem. 281, 3586–3594 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Christiansen, M. N. et al. Cell surface protein glycosylation in cancer. Proteomics 14, 525–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Arnold, J. N., Saldova, R., Hamid, U. M. & Rudd, P. M. Evaluation of the serum N-linked glycome for the diagnosis of cancer and chronic inflammation. Proteomics 8, 3284–3293 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, Y. J. & Varki, A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Dall'Olio, F. & Chiricolo, M. Sialyltransferases in cancer. Glycoconj. J. 18, 841–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Lise, M. et al. Clinical correlations of α2,6-sialyltransferase expression in colorectal cancer patients. Hybridoma 19, 281–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Amado, M., Carneiro, F., Seixas, M., Clausen, H. & Sobrinho-Simoes, M. Dimeric sialyl-Lex expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology 114, 462–470 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Baldus, S. E. et al. Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: Sialosyl-Lewisa, Sialosyl-Lewisx and sialosyl-Tn. Tumour Biol. 19, 445–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Rosen, S. D. & Bertozzi, C. R. The selectins and their ligands. Curr. Opin. Cell Biol. 6, 663–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Nakamori, S. et al. Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res. 53, 3632–3637 (1993).

    CAS  PubMed  Google Scholar 

  48. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Marrelli, D. et al. Preoperative positivity of serum tumor markers is a strong predictor of hematogenous recurrence of gastric cancer. J. Surg. Oncol. 78, 253–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka, F. et al. Prognostic significance of polysialic acid expression in resected non-small cell lung cancer. Cancer Res. 61, 1666–1670 (2001).

    CAS  PubMed  Google Scholar 

  52. Falconer, R. A., Errington, R. J., Shnyder, S. D., Smith, P. J. & Patterson, L. H. Polysialyltransferase: a new target in metastatic cancer. Curr. Cancer Drug Targets 12, 925–939 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Todeschini, A. R., Dos Santos, J. N., Handa, K. & Hakomori, S. I. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem. 282, 8123–8133 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Carvalho, A. S. et al. Differential expression of α-2,3-sialyltransferases and α-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 42, 80–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. de Vries, T., Knegtel, R. M., Holmes, E. H. & Macher, B. A. Fucosyltransferases: structure/function studies. Glycobiology 11, 119R–128R (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hiraiwa, N. et al. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood 101, 3615–3621 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Matsuura, N. et al. Gene expression of fucosyl- and sialyl-transferases which synthesize sialyl Lewisx, the carbohydrate ligands for E-selectin, in human breast cancer. Int. J. Oncol. 12, 1157–1164 (1998).

    CAS  PubMed  Google Scholar 

  58. Holmes, E. H., Hakomori, S. & Ostrander, G. K. Synthesis of type 1 and 2 lacto series glycolipid antigens in human colonic adenocarcinoma and derived cell lines is due to activation of a normally unexpressed β1→3N-acetylglucosaminyltransferase. J. Biol. Chem. 262, 15649–15658 (1987).

    CAS  PubMed  Google Scholar 

  59. Marcos, N. T. et al. Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J. Clin. Invest. 118, 2325–2336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Magalhaes, A. et al. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim. Biophys. Acta 1852, 1928–1939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trinchera, M. et al. The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int. J. Biochem. Cell Biol. 43, 130–139 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, Y. C. et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl Acad. Sci. USA 108, 11332–11337 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Potapenko, I. O. et al. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol. Oncol. 4, 98–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Hutchinson, W. L., Du, M. Q., Johnson, P. J. & Williams, R. Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis. Hepatology 13, 683–688 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Sato, Y. et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. N. Engl. J. Med. 328, 1802–1806 (1993). This study revealed the capacity of α-fetoprotein L3 and α-fetoprotein P4+P5 in serum to act as predictive markers to differentiate HCC from cirrhosis.

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi, M., Kuroki, Y., Ohtsubo, K. & Taniguchi, N. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr. Res. 344, 1387–1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L. & Kerbel, R. S. Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582–585 (1987). This study reported that increased expression of β1–6-linked branching oligosaccharide structures is directly related to the metastatic potential of the cells.

    Article  CAS  PubMed  Google Scholar 

  68. Di Lella, S. et al. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50, 7842–7857 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Croci, D. O. et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 156, 744–758 (2014). This article describes a glycosylation-dependent pathway that preserves angiogenesis in anti-VEGF refractory tumours.

    Article  CAS  PubMed  Google Scholar 

  70. Demetriou, M., Nabi, I. R., Coppolino, M., Dedhar, S. & Dennis, J. W. Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V. J. Cell Biol. 130, 383–392 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Seberger, P. J. & Chaney, W. G. Control of metastasis by Asn-linked, β1–6 branched oligosaccharides in mouse mammary cancer cells. Glycobiology 9, 235–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Guo, H. B. et al. Specific posttranslational modification regulates early events in mammary carcinoma formation. Proc. Natl Acad. Sci. USA 107, 21116–21121 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306–312 (2000). This study reports the establishment of mice deficient in Mgat5 by targeted gene mutation. Mammary tumour growth and metastases induced by the polyomavirus middle T oncogene were considerably suppressed in Mgat5−/− mice compared with in transgenic littermates expressing Mgat5.

    Article  CAS  PubMed  Google Scholar 

  74. Guo, H., Nagy, T. & Pierce, M. Post-translational glycoprotein modifications regulate colon cancer stem cells and colon adenoma progression in Apcmin/+ mice through altered Wnt receptor signaling. J. Biol. Chem. 289, 31534–31549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yoshimura, M., Nishikawa, A., Ihara, Y., Taniguchi, S. & Taniguchi, N. Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection. Proc. Natl Acad. Sci. USA 92, 8754–8758 (1995). This article provides the first demonstration of the tumour-suppressive role of GnT-III.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao, Y. et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 275, 1939–1948 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kudelka, M. R., Ju, T., Heimburg-Molinaro, J. & Cummings, R. D. Simple sugars to complex disease—mucin-type O-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berois, N. et al. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin. Chem. 59, 225–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Gomes, J. et al. Expression of UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase-6 in gastric mucosa, intestinal metaplasia, and gastric carcinoma. J. Histochem. Cytochem. 57, 79–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gill, D. J. et al. Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc. Natl Acad. Sci. USA 110, E3152–E3161 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dalziel, M. et al. The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J. Biol. Chem. 276, 11007–11015 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Reis, C. A., David, L., Seixas, M., Burchell, J. & Sobrinho-Simoes, M. Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. Int. J. Cancer 79, 402–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Itzkowitz, S. et al. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology 100, 1691–1700 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Radhakrishnan, P. et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl Acad. Sci. USA 111, E4066–E4075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pinho, S. et al. Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett. 249, 157–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. David, L., Nesland, J. M., Clausen, H., Carneiro, F. & Sobrinho-Simoes, M. Simple mucin-type carbohydrate antigens (Tn, sialosyl-Tn and T) in gastric mucosa, carcinomas and metastases. APMIS Suppl. 27, 162–172 (1992).

    CAS  PubMed  Google Scholar 

  87. Dall'Olio, F., Malagolini, N., Trinchera, M. & Chiricolo, M. Mechanisms of cancer-associated glycosylation changes. Front. Biosci. (Landmark Ed.) 17, 670–699 (2012).

    Article  CAS  Google Scholar 

  88. Ferreira, J. A. et al. Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours. Mol. Oncol. 7, 719–731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ricardo, S. et al. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours. Mol. Oncol. 9, 503–512 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc. Natl Acad. Sci. USA 99, 16613–16618 (2002). This study describes the role of the molecular chaperone C1GALT1C1 for activity of the core 1 β3-GalT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ju, T. et al. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68, 1636–1646 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Julien, S. et al. Sialyl-Tn vaccine induces antibody-mediated tumour protection in a relevant murine model. Br. J. Cancer 100, 1746–1754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sandmaier, B. M. et al. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine. J. Immunother. 22, 54–66 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Pinho, S. S. et al. E-cadherin and adherens-junctions stability in gastric carcinoma: functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim. Biophys. Acta 1830, 2690–2700 (2013). This article reports the biological significance of GnT-III and GnT-V in the modulation of E-cadherin-mediated cell–cell adhesion in cancer.

    Article  CAS  PubMed  Google Scholar 

  95. Pinho, S. S. et al. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum. Mol. Genet. 18, 2599–2608 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Takeuchi, H. & Haltiwanger, R. S. Significance of glycosylation in Notch signaling. Biochem. Biophys. Res. Commun. 453, 235–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Boscher, C., Dennis, J. W. & Nabi, I. R. Glycosylation, galectins and cellular signaling. Curr. Opin. Cell Biol. 23, 383–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. de-Freitas-Junior, J. C. et al. Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNAc N-glycans modulation. an interplay with E-cadherin. PLoS ONE 8, e81579 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gomes, C. et al. Expression of ST3GAL4 leads to SLex expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS ONE 8, e66737 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dennis, J. W., Nabi, I. R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–1241 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Bassaganas, S. et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS ONE 9, e98595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Pinho, S. S. et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell. Mol. Life Sci. 68, 1011–1020 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

    CAS  PubMed  Google Scholar 

  105. Liwosz, A., Lei, T. & Kukuruzinska, M. A. N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281, 23138–23149 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Guo, H. B., Lee, I., Kamar, M. & Pierce, M. N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell–cell adhesion and intracellular signaling pathways. J. Biol. Chem. 278, 52412–52424 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ihara, S. et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding β1–6 GlcNAc branching. J. Biol. Chem. 277, 16960–16967 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Carvalho, S. et al. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene http://dx.doi.org/10.1038/onc.2015.225 (2015).

  109. Yoshimura, M., Ihara, Y., Matsuzawa, Y. & Taniguchi, N. Aberrant glycosylation of E-cadherin enhances cell-cell binding to suppress metastasis. J. Biol. Chem. 271, 13811–13815 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Kitada, T. et al. The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin. J. Biol. Chem. 276, 475–480 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Xu, Q. et al. Roles of N-acetylglucosaminyltransferase III in epithelial-to-mesenchymal transition induced by transforming growth factor β1 (TGF-β1) in epithelial cell lines. J. Biol. Chem. 287, 16563–16574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gu, J. et al. A mutual regulation between cell-cell adhesion and N-glycosylation: implication of the bisecting GlcNAc for biological functions. J. Proteome Res. 8, 431–435 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Dennis, J. W., Granovsky, M. & Warren, C. E. Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Pinho, S. S., Reis, C. A., Gartner, F. & Alpaugh, M. L. Molecular plasticity of E-cadherin and sialyl lewis x expression, in two comparative models of mammary tumorigenesis. PLoS ONE 4, e6636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seidenfaden, R., Krauter, A., Schertzinger, F., Gerardy-Schahn, R. & Hildebrandt, H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol. Cell. Biol. 23, 5908–5918 (2003). This study demonstrates the role of polysialic acid on neural cell adhesion molecule in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin, S., Kemmner, W., Grigull, S. & Schlag, P. M. Cell surface α2,6 sialylation affects adhesion of breast carcinoma cells. Exp. Cell Res. 276, 101–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Tamura, F. et al. RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer http://dx.doi.org/10.1007/s10120-014-0454-z (2014).

  118. Kim, S. H., Turnbull, J. & Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209, 139–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wade, A. et al. Proteoglycans and their roles in brain cancer. FEBS J. 280, 2399–2417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cecchi, F. et al. Targeted disruption of heparan sulfate interaction with hepatocyte and vascular endothelial growth factors blocks normal and oncogenic signaling. Cancer Cell 22, 250–262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tan, K. W. et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood 122, 3666–3677 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Gunthert, U. et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  124. da Cunha, C. B. et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Lab. Invest. 90, 1604–1614 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. English, N. M., Lesley, J. F. & Hyman, R. Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding. Cancer Res. 58, 3736–3742 (1998).

    CAS  PubMed  Google Scholar 

  126. Katoh, S., Zheng, Z., Oritani, K., Shimozato, T. & Kincade, P. W. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J. Exp. Med. 182, 419–429 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Goupille, C., Hallouin, F., Meflah, K. & Le Pendu, J. Increase of rat colon carcinoma cells tumorigenicity by α(1–2) fucosyltransferase gene transfection. Glycobiology 7, 221–229 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Wolff, E. A. et al. Generation of artificial proteoglycans containing glycosaminoglycan-modified CD44. Demonstration of the interaction between rantes and chondroitin sulfate. J. Biol. Chem. 274, 2518–2524 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bharadwaj, A. G. et al. Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing. Am. J. Pathol. 174, 1027–1036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Paszek, M. J. et al. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liotta, L. A. Tumor invasion and metastases—role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 46, 1–7 (1986).

    Article  CAS  PubMed  Google Scholar 

  133. Jin, H. & Varner, J. Integrins: roles in cancer development and as treatment targets. Br. J. Cancer 90, 561–565 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Asada, M., Furukawa, K., Segawa, K., Endo, T. & Kobata, A. Increased expression of highly branched N-glycans at cell surface is correlated with the malignant phenotypes of mouse tumor cells. Cancer Res. 57, 1073–1080 (1997).

    CAS  PubMed  Google Scholar 

  135. Guo, H. B., Lee, I., Kamar, M., Akiyama, S. K. & Pierce, M. Aberrant N-glycosylation of β1 integrin causes reduced α5β1 integrin clustering and stimulates cell migration. Cancer Res. 62, 6837–6845 (2002).

    CAS  PubMed  Google Scholar 

  136. Pochec, E. et al. Expression of integrins α3β1 and α5β1 and GlcNAc β1,6 glycan branching influences metastatic melanoma cell migration on fibronectin. Eur. J. Cell Biol. 92, 355–362 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Isaji, T. et al. Introduction of bisecting GlcNAc into integrin α5β1 reduces ligand binding and down-regulates cell adhesion and cell migration. J. Biol. Chem. 279, 19747–19754 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Zhao, Y. et al. N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on α3β1 integrin-mediated cell migration. J. Biol. Chem. 281, 32122–32130 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Gu, J. & Taniguchi, N. Regulation of integrin functions by N-glycans. Glycoconj. J. 21, 9–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Dennis, J., Waller, C., Timpl, R. & Schirrmacher, V. Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature 300, 274–276 (1982).

    Article  CAS  PubMed  Google Scholar 

  141. Seales, E. C. et al. Hypersialylation of β1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res. 65, 4645–4652 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Kariya, Y., Kawamura, C., Tabei, T. & Gu, J. Bisecting GlcNAc residues on laminin-332 down-regulate galectin-3-dependent keratinocyte motility. J. Biol. Chem. 285, 3330–3340 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Ranjan, A., Bane, S. M. & Kalraiya, R. D. Glycosylation of the laminin receptor (α3β1) regulates its association with tetraspanin CD151: impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp. Cell Res. 322, 249–264 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Vlodavsky, I. & Friedmann, Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J. Clin. Invest. 108, 341–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lendorf, M. E., Manon-Jensen, T., Kronqvist, P., Multhaupt, H. A. & Couchman, J. R. Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J. Histochem. Cytochem. 59, 615–629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Saoncella, S. et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc. Natl Acad. Sci. USA 96, 2805–2810 (1999). This article describes how a proteoglycan cooperates with integrins interfering with focal adhesions and actin stress fibres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Beauvais, D. M., Burbach, B. J. & Rapraeger, A. C. The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cells. J. Cell Biol. 167, 171–181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  149. Marshall, S., Bacote, V. & Traxinger, R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).

    CAS  PubMed  Google Scholar 

  150. Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Slawson, C., Copeland, R. J. & Hart, G. W. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem. Sci. 35, 547–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ferrer, C. M. et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell 54, 820–831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ma, Z. & Vosseller, K. Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J. Biol. Chem. 289, 34457–34465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Caldwell, S. A. et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29, 2831–2842 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Zachara, N. E. & Hart, G. W. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 1761, 599–617 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Lynch, T. P. et al. Critical role of O-linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J. Biol. Chem. 287, 11070–11081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhu, W., Leber, B. & Andrews, D. W. Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 20, 5999–6007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Itkonen, H. M. et al. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73, 5277–5287 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Yang, W. H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Lau, K. S. et al. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129, 123–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Stanley, P. A method to the madness of N-glycan complexity? Cell 129, 27–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Taniguchi, N. A sugar-coated switch for cellular growth and arrest. Nat. Chem. Biol. 3, 307–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Partridge, E. A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Guo, H. B., Johnson, H., Randolph, M., Lee, I. & Pierce, M. Knockdown of GnT-Va expression inhibits ligand-induced downregulation of the epidermal growth factor receptor and intracellular signaling by inhibiting receptor endocytosis. Glycobiology 19, 547–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Song, Y., Aglipay, J. A., Bernstein, J. D., Goswami, S. & Stanley, P. The bisecting GlcNAc on N-glycans inhibits growth factor signaling and retards mammary tumor progression. Cancer Res. 70, 3361–3371 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sato, Y. et al. Overexpression of N-acetylglucosaminyltransferase III enhances the epidermal growth factor-induced phosphorylation of ERK in HeLaS3 cells by up-regulation of the internalization rate of the receptors. J. Biol. Chem. 276, 11956–11962 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Bremer, E. G. & Hakomori, S. Gangliosides as receptor modulators. Adv. Exp. Med. Biol. 174, 381–394 (1984).

    Article  CAS  PubMed  Google Scholar 

  169. Park, S. Y., Yoon, S. J., Freire- de-Lima, L., Kim, J. H. & Hakomori, S. I. Control of cell motility by interaction of gangliosides, tetraspanins, and epidermal growth factor receptor in A431 versus KB epidermoid tumor cells. Carbohydr. Res. 344, 1479–1486 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Birks, S. M. et al. Targeting the GD3 acetylation pathway selectively induces apoptosis in glioblastoma. Neuro Oncol. 13, 950–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rabinovich, G. A. & Toscano, M. A. Turning 'sweet' on immunity: galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Macauley, M. S., Crocker, P. R. & Paulson, J. C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14, 653–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ragupathi, G. et al. Antibodies against tumor cell glycolipids and proteins, but not mucins, mediate complement-dependent cytotoxicity. J. Immunol. 174, 5706–5712 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Lavrsen, K. et al. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj. J. 30, 227–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Samsen, A. et al. DC-SIGN and SRCL bind glycans of carcinoembryonic antigen (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1): recombinant human glycan-binding receptors as analytical tools. Eur. J. Cell Biol. 89, 87–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Saeland, E. et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol. Immunother. 56, 1225–1236 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Laubli, H. et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs. J. Biol. Chem. 289, 33481–33491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Liu, F. T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Thijssen, V. L., Heusschen, R., Caers, J. & Griffioen, A. W. Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim. Biophys. Acta 1855, 235–247 (2015).

    CAS  PubMed  Google Scholar 

  180. Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N. & Dwek, R. A. Emerging principles for the therapeutic exploitation of glycosylation. Science 343, 1235681 (2014). Addresses the potential of glycans to be an important source for the development of novel targeted therapeutic strategies.

    Article  CAS  PubMed  Google Scholar 

  181. Slovin, S. F. et al. Carbohydrate vaccines in cancer: immunogenicity of a fully synthetic globo H hexasaccharide conjugate in man. Proc. Natl Acad. Sci. USA 96, 5710–5715 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Buskas, T., Thompson, P. & Boons, G. J. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chem Commun. 2009, 5335–5349 (2009).

    Article  CAS  Google Scholar 

  183. Li, M., Song, L. & Qin, X. Glycan changes: cancer metastasis and anti-cancer vaccines. J. Biosci. 35, 665–673 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Beatson, R. E., Taylor-Papadimitriou, J. & Burchell, J. M. MUC1 immunotherapy. Immunotherapy 2, 305–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Mackall, C. L., Merchant, M. S. & Fry, T. J. Immune-based therapies for childhood cancer. Nat. Rev. Clin. Oncol. 11, 693–703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu, S. D. et al. Afucosylated antibodies increase activation of FcγRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol. Res. 3, 173–183 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M. & O'Kennedy, R. J. Aberrant PSA glycosylation — a sweet predictor of prostate cancer. Nat. Rev. Urol. 10, 99–107 (2013). Describes the potential of altered PSA-glycosylation patterns to be used as a reliable diagnostic tool in discriminating between significant and insignificant prostate cancers.

    Article  CAS  PubMed  Google Scholar 

  188. Zurawski, V. R. Jr, Orjaseter, H., Andersen, A. & Jellum, E. Elevated serum CA 125 levels prior to diagnosis of ovarian neoplasia: relevance for early detection of ovarian cancer. Int. J. Cancer 42, 677–680 (1988).

    Article  PubMed  Google Scholar 

  189. Goldstein, M. J. & Mitchell, E. P. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest. 23, 338–351 (2005).

    Article  PubMed  Google Scholar 

  190. Ebeling, F. G. et al. Serum CEA and CA 15–13 as prognostic factors in primary breast cancer. Br. J. Cancer 86, 1217–1222 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kumpulainen, E. J., Keskikuru, R. J. & Johansson, R. T. Serum tumor marker CA 15.3 and stage are the two most powerful predictors of survival in primary breast cancer. Breast Cancer Res. Treat. 76, 95–102 (2002).

    Article  CAS  PubMed  Google Scholar 

  192. Safi, F., Schlosser, W., Kolb, G. & Beger, H. G. Diagnostic value of CA 19–19 in patients with pancreatic cancer and nonspecific gastrointestinal symptoms. J. Gastrointest. Surg. 1, 106–112 (1997).

    Article  CAS  PubMed  Google Scholar 

  193. Fukushima, K., Satoh, T., Baba, S. & Yamashita, K. α1,2-fucosylated and β-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 20, 452–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Jankovic, M. M. & Milutinovic, B. S. Glycoforms of CA125 antigen as a possible cancer marker. Cancer Biomark. 4, 35–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Saeland, E. et al. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int. J. Cancer 131, 117–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Noda, K. et al. Gene expression of α1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of α-fetoprotein. Hepatology 28, 944–952 (1998).

    Article  CAS  PubMed  Google Scholar 

  197. Wang, M. et al. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev. 18, 1914–1921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Adamczyk, B., Tharmalingam, T. & Rudd, P. M. Glycans as cancer biomarkers. Biochim. Biophys. Acta 1820, 1347–1353 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Steentoft, C. et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat. Methods 8, 977–982 (2011). Describes the development of the SimpleCell strategy using zinc-finger nucleases for the characterization of the O -glycoproteome of cancer cells.

    Article  CAS  PubMed  Google Scholar 

  200. Campos, D. et al. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol. Cell. Proteomics 14, 1616–1629 (2015). Details the characterization of the O -glycoproteome of gastric cancer cells and serum from patients with gastric cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lauc, G. et al. Genomics meets glycomics — the first GWAS study of human N-glycome identifies HNF1α as a master regulator of plasma protein fucosylation. PLoS Genet. 6, e1001256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Miyoshi, E. & Nakano, M. Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8, 3257–3262 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Gomes, C. et al. Glycoproteomic analysis of serum from patients with gastric precancerous lesions. J. Proteome Res. 12, 1454–1466 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Saldova, R., Fan, Y., Fitzpatrick, J. M., Watson, R. W. & Rudd, P. M. Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21, 195–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Blixt, O. et al. Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res. 13, R25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pedersen, J. W. et al. Cancer-associated autoantibodies to MUC1 and MUC4 — a blinded case-control study of colorectal cancer in UK collaborative trial of ovarian cancer screening. Int. J. Cancer 134, 2180–2188 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Moloney, D. J. et al. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J. Biol. Chem. 275, 9604–9611 (2000).

    Article  CAS  PubMed  Google Scholar 

  209. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  210. Cohen, B. et al. Fringe boundaries coincide with Notch-dependent patterning centres in mammals and alter Notch-dependent development in Drosophila. Nat. Genet. 16, 283–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  211. Tanaka, H. et al. Acute myelogenous leukemia with PIG-A gene mutation evolved from aplastic anemia-paroxysmal nocturnal hemoglobinuria syndrome. Int. J. Hematol. 73, 206–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  213. Mahdavi, J. et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Magalhaes, A., Ismail, M. N. & Reis, C. A. Sweet receptors mediate the adhesion of the gastric pathogen Helicobacter pylori: glycoproteomic strategies. Expert Rev. Proteomics 7, 307–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  215. Sarrats, A. et al. Glycosylation of liver acute-phase proteins in pancreatic cancer and chronic pancreatitis. Proteomics Clin. Appl. 4, 432–448 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Dias, A. M. et al. Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Hum. Mol. Genet. 23, 2416–2427 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Samraj, A. N. et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl Acad. Sci. USA 112, 542–547 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Chou, H. H. et al. A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl Acad. Sci. USA 95, 11751–11756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ychou, M., Duffour, J., Kramar, A., Gourgou, S. & Grenier, J. Clinical significance and prognostic value of CA72-4 compared with CEA and CA19-9 in patients with gastric cancer. Dis. Markers 16, 105–110 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Valmu, L., Alfthan, H., Hotakainen, K., Birken, S. & Stenman, U. H. Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography — electrospray mass spectrometry. Glycobiology 16, 1207–1218 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Institute of Molecular Pathology and Immunology of the University of Porto integrates the Institute for Research and Innovation in Health, which is partially supported by the Portuguese Foundation for Science and Technology (FCT). This work is funded by the European Regional Development Fund (FEDER) through the Operational Programme for Competitiveness Factors (COMPETE) and by national funds through the FCT, under the projects PEst-C/SAU/LA0003/2013, PTDC/BBB-EBI/0786/2012 and EXPL/BIM-MEC/0149/2012. S.S.P. acknowledges a grant from the FCT (number SFRH/BPD/63094/2009). C.A.R. acknowledges support from the European Union Seventh Framework Programme GastricGlycoExplorer (grant number 316929). The authors apologize that they cannot include all the relevant studies on glycosylation in cancer in this article owing to limitation of space. The authors thank Tiago Fontes-Oliveira for support in figures preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso A. Reis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Glycome

The entire complement of glycan structures in an organism.

Anomeric state

The configuration (α or β) of the hydroxy group originating from the aldehyde or ketone group after monosaccharide ring closure.

Sialic acid-binding immunoglobulin-type lectins

(Siglecs). Proteins that bind sialic acid.

N-glycans

Oligosaccharides covalently linked to an Asp residue of a protein (at the consensus sequence Asn-X-Ser/Thr, in which X is any amino acid) via a nitrogen atom. N-glycans are classified into high-mannose, complex and hybrid types.

O-glycans

Oligosaccharides that are linked to a polypeptide via an oxygen atom. O-glycans are classified according to the initiating monosaccharide linked to a Ser or Thr residue.

Glycosaminoglycan

(GAG). A linear co-polymer containing acidic disaccharide repeating units attached to proteoglycans via xylose linked to the hydroxyl group of a Ser residue8.

Chondroitin sulfate

A GAG chain containing acidic disaccharide repeating units of N-acetylgalactosamine β1-4 glucuronic acid (GlcNAcβ1-4GlcA). The GAG is called dermatan sulfate when the repeating units is N-acetylgalactosamine β1-4 iduronic acid (GlcNAcβ1-4IdoA).

Heparan sulfate

A GAG chain containing acidic disaccharide repeating units of N-acetylgalactosamine α1-4 glucuronic acid or iduronic acid (GlcNAcα1-4GlcA or GlcNAcα1-4IdoA).

Keratan sulfate

A GAG chain containing acidic disaccharide repeating units of galactose 1-β4-N-acetylglucosamine (Galβ1-4GlcNAc).

Glycosyltransferases

Enzymes that catalyse the transfer of saccharides (sugars) from activated donors to acceptor molecules (proteins, lipids or carbohydrates), forming covalent bonds.

Microdomain

A plasma membrane domain containing glycosphingolipids and proteins receptors influencing membrane fluidity, protein assembly and signalling.

O-GlcNAcylation

A covalent addition of N-acetylglucosamine (GlcNAc) to Ser or Thr hydroxyl moieties by O-GlcNAc transferase on nuclear and cytoplasmic proteins.

Tumour editing

Changes in tumour immunogenicity due to the antitumour response of the immune system, leading to emergence of immune-resistant cancer cell variants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinho, S., Reis, C. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15, 540–555 (2015). https://doi.org/10.1038/nrc3982

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3982

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer