Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting lab-on-a-chip technology for drug discovery

Key Points

  • Recent progress in lab-on-a-chip (LOC) technology and microfluidics is reviewed in this article, with a special focus on drug discovery.

  • We introduce relevant scaling laws, together with the means by which the use of LOC technology could be advantageous.

  • We discuss the origin of microfluidics and its benefits compare to conventional approaches.

  • We discuss microfluidic techniques such as droplet microfluidics and patch clamp techniques, as well as their applications in drug discovery

  • The applications of microfluidic techniques include measurements of enzyme activity and kinetics, drug–protein interactions, DNA synthesis and protein expression.

  • Microfluidics can also be used for three-dimensional cell culturing, the development of organs-on-a-chip, as well as for the analysis of animals-on-a chip.

Abstract

The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Droplet-based microfluidics.
Figure 2: Parallelized synthesis of oligonucleotides on a chip.
Figure 3: Microfluidic array to order and vertically orient Drosophila melanogaster embryos with a high throughput.

Similar content being viewed by others

References

  1. Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203–212 (2009).

    Article  CAS  Google Scholar 

  2. Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244–248 (1990).

    Article  CAS  Google Scholar 

  3. Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).

    Article  CAS  Google Scholar 

  4. Arora, A., Simone, G., Salieb-Beugelaar, G., Kim, J. T. & Manz, A. Latest developments in micro total analysis systems. Anal. Chem. 82, 4830–4847 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov. 5, 210–218 (2006).

    Article  CAS  Google Scholar 

  6. Kang, L., Chung, B. G., Langer, R. & Khademhosseini, A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov. Today 13, 1–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Tang, K. C., Reboud, J., Kwok, Y. L., Peng, S. L. & Yobas, L. Lateral patch-clamping in a standard 1536-well microplate format. Lab Chip 10, 1044–1050 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C.-Y., Tu, T.-Y., Jong, D.-S. & Wo, A. M. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange. Biotechnol. Bioengineer. 108, 1395–1403 (2011).

    Article  CAS  Google Scholar 

  9. Teh, S. Y., Lin, R., Hung, L. H. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003).

    Article  CAS  Google Scholar 

  12. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mao, X., Waldeisen, J. R. & Huang, T. J. “Microfluidic drifting” — implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7, 1260–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mao, X., Lin, S.-C. S., Dong, C. & Huang, T. J. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Cho, S. K., Moon, H. J. & Kim, C. J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromechan. Systems 12, 70–80 (2003).

    Article  Google Scholar 

  16. Wang, K. L., Jones, T. B. & Raisanen, A. DEP actuated nanoliter droplet dispensing using feedback control. Lab Chip 9, 901–909 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed, R. & Jones, T. B. Dispensing picoliter droplets on substrates using dielectrophoresis. J. Electrostat. 64, 543–549 (2006).

    Article  Google Scholar 

  18. He, M. Y., Kuo, J. S. & Chiu, D. T. Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems. Appl. Phys. Lett. 87, 031916 (2005).

    Article  CAS  Google Scholar 

  19. Darhuber, A. A., Valentino, J. P. & Troian, S. M. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab Chip 10, 1061–1071 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Darhuber, A. A., Valentino, J. P., Troian, S. M. & Wagner, S. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J. Microelectromech. Syst. 12, 873–879 (2003).

    Article  CAS  Google Scholar 

  21. Lee, C.-Y., Pang, W., Yu, H. & Kim, E. S. Subpicoliter droplet generation based on a nozzle-free acoustic transducer. Appl. Phys. Lett. 93, 034104 (2008).

    Article  CAS  Google Scholar 

  22. Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9, 2625–2627 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Shi, J., Ahmed, D., Mao, X., Lin, S.-C. S. & Huang, T. J. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Shi, J. et al. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354–3359 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Zeng, S. J., Li, B. W., Su, X. O., Qin, J. H. & Lin, B. C. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9, 1340–1343 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Fidalgo, L. M. et al. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed. Engl. 47, 2042–2045 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, D. L., Gerdts, C. J. & Ismagilov, R. F. Using microfluidics to observe the effect of mixing on nucleation of protein crystals. J. Am. Chem. Soc. 127, 9672–9673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Niu, X. Z., Gielen, F., Edel, J. B. & deMello, A. J. A microdroplet dilutor for high-throughput screening. Nature Chem. 3, 437–442 (2011).

    Article  CAS  Google Scholar 

  31. Guttenberg, Z. et al. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5, 308–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hughes, A. J. & Herr, A. E. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography. Anal. Chem. 82, 3803–3811 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Matosevic, S., Szita, N. & Baganz, F. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 86, 325–334 (2011).

    Article  CAS  Google Scholar 

  34. Garcia, E., Hasenbank, M. S., Finlayson, B. & Yager, P. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 7, 249–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lombardi, D. & Dittrich, P. S. Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal. Bioanal. Chem. 399, 347–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J. S., Ryu, J. & Park, C. B. High-throughput analysis of Alzheimer's β-amyloid aggregation using a microfluidic self-assembly of monomers. Anal. Chem. 81, 2751–2759 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki, H. & Takeuchi, S. Microtechnologies for membrane protein studies. Anal. Bioanal. Chem. 391, 2695–2702 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Einav, S. et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nature Biotech. 26, 1019–1027 (2008).

    Article  CAS  Google Scholar 

  39. Maerkl, S. J. & Quake, S. R. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70, 1668–1678 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotech. 29, 341–345 (2011).

    Article  CAS  Google Scholar 

  42. Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edd, J. F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262–1264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. He, M. et al. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77, 1539–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Baret, J. C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195–14200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Shi, W. W., Qin, J. H., Ye, N. N. & Lin, B. C. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8, 1432–1435 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kong, D. S., Carr, P. A., Chen, L., Zhang, S. & Jacobson, J. M. Parallel gene synthesis in a microfluidic device. Nucleic Acids Res. 35, e61 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lee, C.-C., Snyder, T. M. & Quake, S. R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 38, 2514–2521 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotech. 22, 1253–1259 (2004).

    Article  CAS  Google Scholar 

  53. Khnouf, R., Olivero, D., Jin, S., Coleman, M. A. & Fan, Z. H. Cell-free expression of soluble and membrane proteins in an array device for drug screening. Anal. Chem. 82, 7021–7026 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  Google Scholar 

  55. Wu, M.-H., Huang, S.-B. & Lee, G.-B. Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Pruss, R. M. Phenotypic screening strategies for neurodegenerative diseases: a pathway to discover novel drug candidates and potential disease targets or mechanisms. CNS Neurol. Disord. Drug Targets 9, 693–700 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Beigel, J., Fella, K., Kramer, P.-J., Kroeger, M. & Hewitt, P. Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol. In Vitro 22, 171–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Rubin, L. L. & Haston, K. M. Stem cell biology and drug discovery. BMC Biol. 9, 42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lutolf, M. P. & Blau, H. M. Artificial stem cell niches. Adv. Mater. 21, 3255–3268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kobel, S. & Lutolf, M. P. Biomaterials meet microfluidics: building the next generation of artificial niches. Curr. Opin. Biotechnol. 22, 690–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Edalat, F., Bae, H., Manoucheri, S., Cha, J. & Khademhosseini, A. Engineering approaches toward deconstructing and controlling the stem cell environment. Ann. Biomed. Eng. 2011, 1–15 (2011).

    Google Scholar 

  63. Wood, D. K., Weingeist, D. M., Bhatia, S. N. & Engelward, B. P. Single cell trapping and DNA damage analysis using microwell arrays. Proc. Natl Acad. Sci. USA 107, 10008–10013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abbott, A. Cell culture: Biology's new dimension. Nature 424, 870–872 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 398, 219–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  67. Chen, A. A., Underhill, G. H. & Bhatia, S. N. Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr. Biol. 2, 517–527 (2010).

    Article  CAS  Google Scholar 

  68. Tung, Y.-C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Carrel, A. On the permanent life of tissues outside of the organsism. J. Exp. Med. 15, 516–528 (1912).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holtfreter, J. A study of the mechanics of gastrulation. J. Exp. Zool. 95, 171–212 (1944).

    Article  Google Scholar 

  71. Leighton, J. A sponge matrix method for tissue culture; formation of organized aggregates of cells in vitro. J. Natl Cancer Inst. 12, 545–561 (1951).

    CAS  PubMed  Google Scholar 

  72. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 9, 273–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tekin, H. et al. Responsive microgrooves for the formation of harvestable tissue constructs. Langmuir 27, 5671–5679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Freytes, D. O., Wan, L. Q. & Vunjak-Novakovic, G. Geometry and force control of cell function. J. Cell. Biochem. 108, 1047–1058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kobel, S. & Lutolf, M. P. High-throughput methods to define complex stem cell niches. Biotechniques 48, IX–XXII (2010).

    Article  PubMed  Google Scholar 

  77. Lii, J. et al. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80, 3640–3647 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Truckenmüller, R. et al. Thermoforming of film-based biomedical microdevices. Adv. Mater. 23, 1311–1329 (2011).

    Article  PubMed  CAS  Google Scholar 

  79. Baker, M. Tissue models: a living system on a chip. Nature 471, 661–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. van Midwoud, P. M., Merema, M. T., Verpoorte, E. & Groothuis, G. M. M. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10, 2778–2786 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. van Midwoud, P. M., Verpoorte, E. & Groothuis, G. M. M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 3, 509–521 (2011).

    Article  CAS  Google Scholar 

  82. Esch, M. B., King, T. L. & Shuler, M. L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Sung, J. H. & Shuler, M. L. A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9, 1385–1394 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Günther, A. et al. A microfluidic platform for probing small artery structure and function. Lab Chip 10, 2341–2349 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Baker, M. Screening: the age of fishes. Nature Methods 8, 47–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Bullen, A. Microscopic imaging techniques for drug discovery. Nature Rev. Drug Discov. 7, 54–67 (2008).

    Article  CAS  Google Scholar 

  88. Conrad, C. et al. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nature Methods 8, 246–249 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hulme, S. E. et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip 10, 589–597 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, N., Dempsey, C. M., Zoval, J. V., Sze, J.-Y. & Madou, M. J. Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sens. Actuators B Chem. 122, 511–518 (2007).

    Article  CAS  Google Scholar 

  91. Chung, K. et al. A microfluidic array for large-scale ordering and orientation of embryos. Nature Methods 8, 171–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Jimenez, A. M. et al. Towards high throughput production of artificial egg oocytes using microfluidics. Lab Chip 11, 429–434 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Pardo-Martin, C. et al. High-throughput in vivo vertebrate screening. Nature Methods 7, 634–636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pujol, A., Mosca, R., Farrés, J. & Aloy, P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31, 115–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Weber, W. & Fussenegger, M. The impact of synthetic biology on drug discovery. Drug Discov. Today 14, 956–963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6 (Suppl. 4), 493–506 (2009).

    Google Scholar 

  99. Vinuselvi, P. et al. Microfluidic technologies for synthetic biology. Int. J. Mol. Sci. 12, 3576–3593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Science and Technology and the US National Institutes of Health (Director's New Innovator Award: 1DP2OD007209-01). The authors thank B. Kiraly, F. Guo and an anonymous peer reviewer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Manz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neužil, P., Giselbrecht, S., Länge, K. et al. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11, 620–632 (2012). https://doi.org/10.1038/nrd3799

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3799

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research