Key Points
-
Recent progress in lab-on-a-chip (LOC) technology and microfluidics is reviewed in this article, with a special focus on drug discovery.
-
We introduce relevant scaling laws, together with the means by which the use of LOC technology could be advantageous.
-
We discuss the origin of microfluidics and its benefits compare to conventional approaches.
-
We discuss microfluidic techniques such as droplet microfluidics and patch clamp techniques, as well as their applications in drug discovery
-
The applications of microfluidic techniques include measurements of enzyme activity and kinetics, drugâprotein interactions, DNA synthesis and protein expression.
-
Microfluidics can also be used for three-dimensional cell culturing, the development of organs-on-a-chip, as well as for the analysis of animals-on-a chip.
Abstract
The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov. 8, 203â212 (2009).
Manz, A., Graber, N. & Widmer, H. M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1, 244â248 (1990).
Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977â1026 (2005).
Arora, A., Simone, G., Salieb-Beugelaar, G., Kim, J. T. & Manz, A. Latest developments in micro total analysis systems. Anal. Chem. 82, 4830â4847 (2010).
Dittrich, P. S. & Manz, A. Lab-on-a-chip: microfluidics in drug discovery. Nature Rev. Drug Discov. 5, 210â218 (2006).
Kang, L., Chung, B. G., Langer, R. & Khademhosseini, A. Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov. Today 13, 1â13 (2008).
Tang, K. C., Reboud, J., Kwok, Y. L., Peng, S. L. & Yobas, L. Lateral patch-clamping in a standard 1536-well microplate format. Lab Chip 10, 1044â1050 (2010).
Chen, C.-Y., Tu, T.-Y., Jong, D.-S. & Wo, A. M. Ion channel electrophysiology via integrated planar patch-clamp chip with on-demand drug exchange. Biotechnol. Bioengineer. 108, 1395â1403 (2011).
Teh, S. Y., Lin, R., Hung, L. H. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198â220 (2008).
Thorsen, T., Roberts, R. W., Arnold, F. H. & Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163â4166 (2001).
Anna, S. L., Bontoux, N. & Stone, H. A. Formation of dispersions using âflow focusingâ in microchannels. Appl. Phys. Lett. 82, 364â366 (2003).
Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537â541 (2005).
Mao, X., Waldeisen, J. R. & Huang, T. J. âMicrofluidic driftingâ â implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7, 1260â1262 (2007).
Mao, X., Lin, S.-C. S., Dong, C. & Huang, T. J. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9, 1583â1589 (2009).
Cho, S. K., Moon, H. J. & Kim, C. J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromechan. Systems 12, 70â80 (2003).
Wang, K. L., Jones, T. B. & Raisanen, A. DEP actuated nanoliter droplet dispensing using feedback control. Lab Chip 9, 901â909 (2009).
Ahmed, R. & Jones, T. B. Dispensing picoliter droplets on substrates using dielectrophoresis. J. Electrostat. 64, 543â549 (2006).
He, M. Y., Kuo, J. S. & Chiu, D. T. Electro-generation of single femtoliter- and picoliter-volume aqueous droplets in microfluidic systems. Appl. Phys. Lett. 87, 031916 (2005).
Darhuber, A. A., Valentino, J. P. & Troian, S. M. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab Chip 10, 1061â1071 (2010).
Darhuber, A. A., Valentino, J. P., Troian, S. M. & Wagner, S. Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J. Microelectromech. Syst. 12, 873â879 (2003).
Lee, C.-Y., Pang, W., Yu, H. & Kim, E. S. Subpicoliter droplet generation based on a nozzle-free acoustic transducer. Appl. Phys. Lett. 93, 034104 (2008).
Franke, T., Abate, A. R., Weitz, D. A. & Wixforth, A. Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9, 2625â2627 (2009).
Shi, J., Ahmed, D., Mao, X., Lin, S.-C. S. & Huang, T. J. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890â2895 (2009).
Shi, J. et al. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9, 3354â3359 (2009).
Zeng, S. J., Li, B. W., Su, X. O., Qin, J. H. & Lin, B. C. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 9, 1340â1343 (2009).
Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113â116 (2000).
Fidalgo, L. M. et al. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. Angew. Chem. Int. Ed. Engl. 47, 2042â2045 (2008).
Chen, D. L., Gerdts, C. J. & Ismagilov, R. F. Using microfluidics to observe the effect of mixing on nucleation of protein crystals. J. Am. Chem. Soc. 127, 9672â9673 (2005).
Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156â2166 (2011).
Niu, X. Z., Gielen, F., Edel, J. B. & deMello, A. J. A microdroplet dilutor for high-throughput screening. Nature Chem. 3, 437â442 (2011).
Guttenberg, Z. et al. Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5, 308â317 (2005).
Hughes, A. J. & Herr, A. E. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography. Anal. Chem. 82, 3803â3811 (2010).
Matosevic, S., Szita, N. & Baganz, F. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 86, 325â334 (2011).
Garcia, E., Hasenbank, M. S., Finlayson, B. & Yager, P. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel. Lab Chip 7, 249â255 (2007).
Lombardi, D. & Dittrich, P. S. Droplet microfluidics with magnetic beads: a new tool to investigate drugâprotein interactions. Anal. Bioanal. Chem. 399, 347â352 (2011).
Lee, J. S., Ryu, J. & Park, C. B. High-throughput analysis of Alzheimer's β-amyloid aggregation using a microfluidic self-assembly of monomers. Anal. Chem. 81, 2751â2759 (2009).
Suzuki, H. & Takeuchi, S. Microtechnologies for membrane protein studies. Anal. Bioanal. Chem. 391, 2695â2702 (2008).
Einav, S. et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nature Biotech. 26, 1019â1027 (2008).
Maerkl, S. J. & Quake, S. R. A systems approach to measuring the binding energy landscapes of transcription factors. Science 315, 233â237 (2007).
Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70, 1668â1678 (2010).
Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotech. 29, 341â345 (2011).
Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392â18397 (2010).
Edd, J. F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262â1264 (2008).
He, M. et al. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77, 1539â1544 (2005).
Baret, J. C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850â1858 (2009).
Brouzes, E. et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc. Natl Acad. Sci. USA 106, 14195â14200 (2009).
Clausell-Tormos, J. et al. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427â437 (2008).
Shi, W. W., Qin, J. H., Ye, N. N. & Lin, B. C. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8, 1432â1435 (2008).
Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199â1202 (2009).
Kong, D. S., Carr, P. A., Chen, L., Zhang, S. & Jacobson, J. M. Parallel gene synthesis in a microfluidic device. Nucleic Acids Res. 35, e61 (2007).
Lee, C.-C., Snyder, T. M. & Quake, S. R. A microfluidic oligonucleotide synthesizer. Nucleic Acids Res. 38, 2514â2521 (2010).
Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotech. 22, 1253â1259 (2004).
Khnouf, R., Olivero, D., Jin, S., Coleman, M. A. & Fan, Z. H. Cell-free expression of soluble and membrane proteins in an array device for drug screening. Anal. Chem. 82, 7021â7026 (2010).
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993â996 (2006).
Wu, M.-H., Huang, S.-B. & Lee, G.-B. Microfluidic cell culture systems for drug research. Lab Chip 10, 939â956 (2010).
Pruss, R. M. Phenotypic screening strategies for neurodegenerative diseases: a pathway to discover novel drug candidates and potential disease targets or mechanisms. CNS Neurol. Disord. Drug Targets 9, 693â700 (2010).
Beigel, J., Fella, K., Kramer, P.-J., Kroeger, M. & Hewitt, P. Genomics and proteomics analysis of cultured primary rat hepatocytes. Toxicol. In Vitro 22, 171â181 (2008).
Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549â552 (2008).
Rubin, L. L. & Haston, K. M. Stem cell biology and drug discovery. BMC Biol. 9, 42 (2011).
Lutolf, M. P. & Blau, H. M. Artificial stem cell niches. Adv. Mater. 21, 3255â3268 (2009).
Kobel, S. & Lutolf, M. P. Biomaterials meet microfluidics: building the next generation of artificial niches. Curr. Opin. Biotechnol. 22, 690â697 (2011).
Edalat, F., Bae, H., Manoucheri, S., Cha, J. & Khademhosseini, A. Engineering approaches toward deconstructing and controlling the stem cell environment. Ann. Biomed. Eng. 2011, 1â15 (2011).
Wood, D. K., Weingeist, D. M., Bhatia, S. N. & Engelward, B. P. Single cell trapping and DNA damage analysis using microwell arrays. Proc. Natl Acad. Sci. USA 107, 10008â10013 (2010).
Abbott, A. Cell culture: Biology's new dimension. Nature 424, 870â872 (2003).
Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 398, 219â226 (2010).
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203â214 (2010).
Chen, A. A., Underhill, G. H. & Bhatia, S. N. Multiplexed, high-throughput analysis of 3D microtissue suspensions. Integr. Biol. 2, 517â527 (2010).
Tung, Y.-C. et al. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473â478 (2011).
Carrel, A. On the permanent life of tissues outside of the organsism. J. Exp. Med. 15, 516â528 (1912).
Holtfreter, J. A study of the mechanics of gastrulation. J. Exp. Zool. 95, 171â212 (1944).
Leighton, J. A sponge matrix method for tissue culture; formation of organized aggregates of cells in vitro. J. Natl Cancer Inst. 12, 545â561 (1951).
Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 9, 273â285 (2004).
Tekin, H. et al. Responsive microgrooves for the formation of harvestable tissue constructs. Langmuir 27, 5671â5679 (2011).
Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393â1396 (2007).
Freytes, D. O., Wan, L. Q. & Vunjak-Novakovic, G. Geometry and force control of cell function. J. Cell. Biochem. 108, 1047â1058 (2009).
Kobel, S. & Lutolf, M. P. High-throughput methods to define complex stem cell niches. Biotechniques 48, IXâXXII (2010).
Lii, J. et al. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal. Chem. 80, 3640â3647 (2008).
Truckenmüller, R. et al. Thermoforming of film-based biomedical microdevices. Adv. Mater. 23, 1311â1329 (2011).
Baker, M. Tissue models: a living system on a chip. Nature 471, 661â665 (2011).
van Midwoud, P. M., Merema, M. T., Verpoorte, E. & Groothuis, G. M. M. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip 10, 2778â2786 (2010).
van Midwoud, P. M., Verpoorte, E. & Groothuis, G. M. M. Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. 3, 509â521 (2011).
Esch, M. B., King, T. L. & Shuler, M. L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev. Biomed. Eng. 13, 55â72 (2011).
Sung, J. H. & Shuler, M. L. A micro cell culture analog (μCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip 9, 1385â1394 (2009).
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662â1668 (2010).
Günther, A. et al. A microfluidic platform for probing small artery structure and function. Lab Chip 10, 2341â2349 (2010).
Baker, M. Screening: the age of fishes. Nature Methods 8, 47â51 (2011).
Bullen, A. Microscopic imaging techniques for drug discovery. Nature Rev. Drug Discov. 7, 54â67 (2008).
Conrad, C. et al. Micropilot: automation of fluorescence microscopy-based imaging for systems biology. Nature Methods 8, 246â249 (2011).
Hulme, S. E. et al. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip 10, 589â597 (2010).
Kim, N., Dempsey, C. M., Zoval, J. V., Sze, J.-Y. & Madou, M. J. Automated microfluidic compact disc (CD) cultivation system of Caenorhabditis elegans. Sens. Actuators B Chem. 122, 511â518 (2007).
Chung, K. et al. A microfluidic array for large-scale ordering and orientation of embryos. Nature Methods 8, 171â176 (2011).
Jimenez, A. M. et al. Towards high throughput production of artificial egg oocytes using microfluidics. Lab Chip 11, 429â434 (2011).
Pardo-Martin, C. et al. High-throughput in vivo vertebrate screening. Nature Methods 7, 634â636 (2010).
Pujol, A., Mosca, R., Farrés, J. & Aloy, P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 31, 115â123 (2010).
Weber, W. & Fussenegger, M. The impact of synthetic biology on drug discovery. Drug Discov. Today 14, 956â963 (2009).
Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894â898 (2009).
Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52â56 (2010).
Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6 (Suppl. 4), 493â506 (2009).
Vinuselvi, P. et al. Microfluidic technologies for synthetic biology. Int. J. Mol. Sci. 12, 3576â3593 (2011).
Acknowledgements
This research was supported by the Korea Institute of Science and Technology and the US National Institutes of Health (Director's New Innovator Award: 1DP2OD007209-01). The authors thank B. Kiraly, F. Guo and an anonymous peer reviewer for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Neužil, P., Giselbrecht, S., Länge, K. et al. Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11, 620â632 (2012). https://doi.org/10.1038/nrd3799
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrd3799