Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growth hormone — past, present and future

Key Points

  • The growth hormone (GH)–insulin-like growth factor (IGF) axis consists of central neuro-anatomical, regulatory and genetic systems, and the peripheral intracellular GH signalling pathway

  • The introduction of recombinant human GH (rhGH) in 1985 ended the phase of pituitary-derived human growth hormone (hGH) and its associated limitations and risks, opening the possibility of widespread clinical use

  • GH deficiency (GHD) is a syndrome with many different causes and is associated with alterations in growth, body composition and metabolism

  • In some non-GHD short stature disorders, rhGH has been proved effective and is used as a surrogate for the currently unknown, pathophysiologically appropriate treatment

  • Risks of hGH therapy might relate to its direct effects on growth, its anti-insulin action and its cell-proliferating activity; however, the safety profile of rhGH in children and adults is good

  • Current innovative treatment approaches relate to personalizing conventional rhGH, developing long-acting GH preparations, the prospect of gene therapy, GH–GH receptor antagonists and, potentially, new indications

Abstract

Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958–1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH — in conjunction with insulin-like growth factors (IGFs) — and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GH–IGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GH–IGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of important discoveries in GH–IGF axis research until 1957.
Figure 2: Timeline of important discoveries in GH–IGF axis research from 1958 to present.
Figure 3: The GH–IGF axis and GH signalling pathway.

Similar content being viewed by others

References

  1. Brown, P. et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901–907 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Navarro, R., Dunn, J. D., Lee, P. A., Owens, G. M. & Rapaport, R. Translating clinical guidelines into practice: the effective and appropriate use of human growth hormone. Am. J. Manag. Care 19, s281–289 (2013).

    PubMed  Google Scholar 

  3. Wit, J. M. et al. Personalized approach to growth hormone treatment: clinical use of growth prediction models. Horm. Res. Paediatr. 79, 257–270 (2013).

    CAS  PubMed  Google Scholar 

  4. Kopchick, J. J. Discovery and development of a new class of drugs: GH antagonists. J. Endocrinol. Invest. 26, 16–26 (2003).

    CAS  PubMed  Google Scholar 

  5. Enderle, A. Dwarfism and gigantism in historical picture postcards. J. R. Soc. Med. 91, 273–278 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. de Herder, W. W. Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886). Pituitary 12, 236–244 (2009).

    PubMed  Google Scholar 

  7. Marie, P. Sur deux cas d'acromégalie. Revue Med. Paris 6, 297–333 (1886).

    Google Scholar 

  8. Fritsche, C. F. & Klebs, E. Ein Beitrag zur Pathologie des Riesenwuchses. Klinische und Pathologisch Anatomische Untersuchungen (Vogel, FCW, 1884).

    Google Scholar 

  9. Minkowski, O. Übereinen fall von akromegalie. Berlin Klin. Wochenschr. 24, 371–374 (1887).

    Google Scholar 

  10. Babinski, J. F. Tumeur du corps pituitaire sans acromégalie et avec arrêt de développement des organes génitaux. Revue Neurol. 8, 531–533 (1900).

    Google Scholar 

  11. Fröhlich, A. Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wiener Klinische Rundschau 15, 833–836 (1901).

    Google Scholar 

  12. Cushing, H. The Pituitary Body and its Disorders. Clinical States Produced by Disorders of the Hypophysis Cerebri (J. B. Lippincott, 1912).

    Google Scholar 

  13. Grumbach, M. M. Herbert McLean Evans, revolutionary in modern endocrinology: a tale of great expectations. J. Clin. Endocrinol. Metab. 55, 1240–1247 (1982).

    CAS  PubMed  Google Scholar 

  14. Evans, H. M. & Long, J. A. The effect of the anterior lobe administered intraperitoneally upon growth, maturity, and oestrus cicles of the rat. Anat. Res. 21, 62–63 (1921).

    Google Scholar 

  15. Houssay, B. A. & Biassotti, A. La diabetes pancreatica de los perros hipophisioprivos. Rec. Soc. Argent. Biol. 6, 251–296 (1930).

    CAS  Google Scholar 

  16. Ketterer, B., Randle, P. J. & Young, F. G. The pituitary growth hormone and metabolic processes. Ergeb Physiol. 49, 127–211 (1957).

    CAS  PubMed  Google Scholar 

  17. Li, C. H. & Evans, H. M. The isolation of pituitary growth hormone. Science 99, 183–184 (1944).

    CAS  PubMed  Google Scholar 

  18. Li, C. H. & Dixon, J. S. Human pituitary growth hormone. 32. The primary structure of the hormone: revision. Arch. Biochem. Biophys. 146, 233–236 (1971).

    CAS  PubMed  Google Scholar 

  19. Knobil, E. & Greep, R. O. The physiology of growth hormone with particular reference to its action in the Rhesus monkey and the “species specificity” problem. Recent Progr. Horm. Res. 15, 1–58 (1959).

    CAS  Google Scholar 

  20. Souza, S. C. et al. A single arginine residue determines species specificity of the human growth hormone receptor. Proc. Natl Acad. Sci. USA 92, 959–963 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck, J. C., Mc, G. E., Dyrenfurth, I. & Venning, E. H. The metabolic effects of human and monkey growth hormone in man. Ann. Intern. Med. 49, 1090–1105 (1958).

    CAS  PubMed  Google Scholar 

  22. Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901–903 (1958).

    CAS  PubMed  Google Scholar 

  23. Blizzard, R. M. History of growth hormone therapy. Indian J. Pediatr. 79, 87–91 (2012).

    PubMed  Google Scholar 

  24. Raiti, S. in Human Growth Hormone (ed. Raiti, S. & Tolman, R. A.) 1–12 (Plenum Publishing Corporation, 1986).

    Google Scholar 

  25. Roos, P., Fevold, H. R. & Gemzell, C. A. Preparation of human growth hormone by gel filtration. Biochim. Biophys. Acta 74, 525–531 (1963).

    CAS  PubMed  Google Scholar 

  26. Harris, G. W. Hypothalamus and pituitary gland with special reference to the posterior pituitary and labour. Br. Med. J. 1, 339–342 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis, S. W. et al. Pituitary gland development and disease: from stem cell to hormone production. Curr. Top. Dev. Biol. 106, 1–47 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McCabe, M. J., Alatzoglou, K. S. & Dattani, M. T. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract. Res. Clin. Endocrinol. Metab. 25, 115–124 (2011).

    CAS  PubMed  Google Scholar 

  29. Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125–133 (1998).

    CAS  PubMed  Google Scholar 

  30. Netchine, I. et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25, 182–186 (2000).

    CAS  PubMed  Google Scholar 

  31. Reynaud, R. et al. Pituitary stalk interruption syndrome in 83 patients: novel HESX1 mutation and severe hormonal prognosis in malformative forms. Eur. J. Endocrinol. 164, 457–465 (2011).

    CAS  PubMed  Google Scholar 

  32. Pfaffle, R. W. et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257, 1118–1121 (1992).

    CAS  PubMed  Google Scholar 

  33. Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18, 147–149 (1998).

    CAS  PubMed  Google Scholar 

  34. Dusatkova, P. et al. Genesis of two most prevalent PROP1 gene variants causing combined pituitary hormone deficiency in 21 populations. Eur. J. Hum. Genet. 24, 415–420 (2016).

    CAS  PubMed  Google Scholar 

  35. Joustra, S. D. et al. IGSF1 deficiency: lessons from an extensive case series and recommendations for clinical management. J. Clin. Endocrinol. Metab. 101, 1627–1636 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Abdel-Meguid, S. S. et al. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc. Natl Acad. Sci. USA 84, 6434–6437 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992).

    CAS  PubMed  Google Scholar 

  38. Barsh, G. S., Seeburg, P. H. & Gelinas, R. E. The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acids Res. 11, 3939–3958 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Baumann, G. P. Growth hormone isoforms. Growth Horm. IGF Res. 19, 333–340 (2009).

    CAS  PubMed  Google Scholar 

  40. Phillips, J. A., I. I. I., Hjelle, B. L., Seeburg, P. H. & Zachmann, M. Molecular basis for familial isolated growth hormone deficiency. Proc. Natl Acad. Sci. USA 78, 6372–6375 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mullis, P. E. Genetics of isolated growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol. 2, 52–62 (2010).

    PubMed  Google Scholar 

  42. Alatzoglou, K. S. et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3191–3199 (2009).

    CAS  PubMed  Google Scholar 

  43. Binder, G., Brown, M. & Parks, J. S. Mechanisms responsible for dominant expression of human growth hormone gene mutations. J. Clin. Endocrinol. Metab. 81, 4047–4050 (1996).

    CAS  PubMed  Google Scholar 

  44. Stewart, D. M., Tian, L., Notarangelo, L. D. & Nelson, D. L. X-Linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol. Res. 40, 262–270 (2008).

    CAS  PubMed  Google Scholar 

  45. Kowarski, A. A., Schneider, J., Ben-Galim, E., Weldon, V. V. & Daughaday, W. H. Growth failure with normal serum RIA-GH and low somatomedin activity: somatomedin restoration and growth acceleration after exogenous GH. J. Clin. Endocrinol. Metab. 47, 461–464 (1978).

    CAS  PubMed  Google Scholar 

  46. Takahashi, Y. et al. Biologically inactive growth hormone caused by an amino acid substitution. J. Clin. Invest. 100, 1159–1165 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rivier, J., Spiess, J., Thorner, M. & Vale, W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300, 276–278 (1982).

    CAS  PubMed  Google Scholar 

  48. Guillemin, R. et al. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218, 585–587 (1982).

    CAS  PubMed  Google Scholar 

  49. Mayo, K. E., Miller, T. L., DeAlmeida, V., Zheng, J. & Godfrey, P. A. The growth-hormone-releasing hormone receptor: signal transduction, gene expression, and physiological function in growth regulation. Ann. NY Acad. Sci. 805, 184–203 (1996).

    CAS  PubMed  Google Scholar 

  50. Wajnrajch, M. P., Gertner, J. M., Harbison, M. D., Chua, S. C. Jr & Leibel, R. L. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat. Genet. 12, 88–90 (1996).

    CAS  PubMed  Google Scholar 

  51. Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973).

    CAS  PubMed  Google Scholar 

  52. Yamada, Y. et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl Acad. Sci. USA 89, 251–255 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thorner, M. O. et al. Physiological role of somatostatin on growth hormone regulation in humans. Metabolism 39, 40–42 (1990).

    CAS  PubMed  Google Scholar 

  54. Corleto, V. D. Somatostatin and the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 17, 63–68 (2010).

    CAS  PubMed  Google Scholar 

  55. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    CAS  PubMed  Google Scholar 

  56. Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974–977 (1996).

    CAS  PubMed  Google Scholar 

  57. Steyn, F. J., Tolle, V., Chen, C. & Epelbaum, J. Neuroendocrine regulation of growth hormone secretion. Compr. Physiol. 6, 687–735 (2016).

    PubMed  Google Scholar 

  58. Veldhuis, J. D., Keenan, D. M. & Pincus, S. M. Motivations and methods for analyzing pulsatile hormone secretion. Endocr. Rev. 29, 823–864 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bonnefont, X. et al. Revealing the large-scale network organization of growth hormone-secreting cells. Proc. Natl Acad. Sci. USA 102, 16880–16885 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hindmarsh, P. C., Fall, C. H., Pringle, P. J., Osmond, C. & Brook, C. G. Peak and trough growth hormone concentrations have different associations with the insulin-like growth factor axis, body composition, and metabolic parameters. J. Clin. Endocrinol. Metab. 82, 2172–2176 (1997).

    CAS  PubMed  Google Scholar 

  61. Waters, M. J. & Brooks, A. J. JAK2 activation by growth hormone and other cytokines. Biochem. J. 466, 1–11 (2015).

    CAS  PubMed  Google Scholar 

  62. Boguszewski, C. L., Barbosa, E. J. L., Svensson, P. A., Johannsson, G. & Glad, C. A. M. Mechanisms in endocrinology: clinical and pharmacogenetic aspects of the growth hormone receptor polymorphism. Eur. J. Endocrinol. 177, R309–R321 (2017).

    CAS  PubMed  Google Scholar 

  63. Godowski, P. J. et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl Acad. Sci. USA 86, 8083–8087 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Baumann, G. Growth hormone binding protein. The soluble growth hormone receptor. Minerva Endocrinol. 27, 265–276 (2002).

    CAS  PubMed  Google Scholar 

  65. Aalbers, A. M. et al. Extreme elevation of serum growth hormone-binding protein concentrations resulting from a novel heterozygous splice site mutation of the growth hormone receptor gene. Horm. Res. 71, 276–284 (2009).

    CAS  PubMed  Google Scholar 

  66. Waters, M. J. et al. Signal transduction by the growth hormone receptor. Proc. Soc. Exp. Biol. Med. 206, 216–220 (1994).

    CAS  PubMed  Google Scholar 

  67. Kopchick, J. J. & Andry, J. M. Growth hormone (GH), GH receptor, and signal transduction. Mol. Genet. Metab. 71, 293–314 (2000).

    CAS  PubMed  Google Scholar 

  68. Lanning, N. J. & Carter-Su, C. Recent advances in growth hormone signaling. Rev. Endocr. Metab. Disord. 7, 225–235 [doi] (2006).

    CAS  PubMed  Google Scholar 

  69. Frank, S. J. & Fuchs, S. Y. Modulation of growth hormone receptor abundance and function: roles for the ubiquitin-proteasome system. Biochim. Biophys. Acta 1782, 785–794 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Re, R. N. & Cook, J. L. The intracrine hypothesis: an update. Regul. Pept. 133, 1–9 (2006).

    CAS  PubMed  Google Scholar 

  71. Salmon, W. D. & Daughaday, W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab Clin. Med. 68, 825–836 (1957).

    Google Scholar 

  72. Rinderknecht, E. & Humbel, R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253, 2769–2776 (1978).

    CAS  PubMed  Google Scholar 

  73. Rinderknecht, E. & Humbel, R. E. Primary structure of human insulin-like growth factor II. FEBS Lett. 89, 283–286 (1978).

    CAS  PubMed  Google Scholar 

  74. Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002).

    CAS  PubMed  Google Scholar 

  75. Zapf, J., Waldvogel, M. & Froesch, E. R. Binding of nonsuppressible insulinlike activity to human serum. Evidence for a carrier protein. Arch. Biochem. Biophys. 168, 638–645 (1975).

    CAS  PubMed  Google Scholar 

  76. Leroith, D., Werner, H., Beitner-Johnson, D. & Roberts Jr, C. T. Molecular and cellular aspects of the insulin-like growth factor 1 receptor. Endocr. Rev. 16, 143–163 (1995).

    CAS  PubMed  Google Scholar 

  77. Baxter, R. C., Martin, J. L. & Beniac, V. A. High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J. Biol. Chem. 264, 11843–11848 (1989).

    CAS  PubMed  Google Scholar 

  78. Ranke, M. B. & Elmlinger, M. Functional role of insulin-like growth factor binding proteins. Horm. Res. 48 (Suppl. 4), 9–15 (1997).

    CAS  PubMed  Google Scholar 

  79. Dauber, A. et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol. Med. 8, 363–374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    CAS  PubMed  Google Scholar 

  81. Yakar, S., Pennisi, P., Wu, Y., Zhao, H. & Leroith, D. Clinical relevance of systemic and local IGF-I. Endocr. Dev. 9, 11–16 (2005).

    CAS  PubMed  Google Scholar 

  82. GH Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J. Clin. Endocrinol. Metab. 85, 3990–3993 (2000).

  83. Wit, J. M. & van Unen, H. Growth of infants with neonatal growth hormone deficiency. Arch. Dis. Child 67, 920–924 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Evans, H. M. S., M. E., Marx, W. & Kibrick, E. A. Bioassay of pituitary growth hormone. Width of proximal epiphyseal cartilage of tibia in hypo-physectomized rats. Endocrinology 21, 13–16 (1943).

    Google Scholar 

  85. Glick, S. M., Roth, J., Yalow, R. S. & Berson, S. A. Immunoassay of human growth hormone in plasma. Nature 199, 784–787 (1963).

    CAS  PubMed  Google Scholar 

  86. Langkamp, M., Weber, K. & Ranke, M. B. Human growth hormone measurement by means of a sensitive ELISA of whole blood spots on filter paper. Growth Horm. IGF Res. 18, 526–532 (2008).

    CAS  PubMed  Google Scholar 

  87. Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555–559 (2011).

    CAS  PubMed  Google Scholar 

  88. Arsene, C. G., Kratzsch, J. & Henrion, A. Mass spectrometry - an alternative in growth hormone measurement. Bioanalysis 6, 2391–2402 (2014).

    CAS  PubMed  Google Scholar 

  89. Junnila, R. K., Strasburger, C. J. & Bidlingmaier, M. Pitfalls of insulin-like growth factor-i and growth hormone assays. Endocrinol. Metab. Clin. North Am. 44, 27–34 (2015).

    PubMed  Google Scholar 

  90. Bristow, A. F. International standards for growth hormone. Horm. Res. 51 (Suppl. 1), 7–12 (1999).

    CAS  PubMed  Google Scholar 

  91. Roth, J., Glick, S. M. & Yalow, R. S. and Bersonsa. Hypoglycemia: a potent stimulus to secretion of growth hormone. Science 140, 987–988 (1963).

    CAS  PubMed  Google Scholar 

  92. Frasier, S. D. The serum growth-hormone response to hypoglycemia in dwarfism. J. Pediatr. 71, 625–638 (1967).

    CAS  PubMed  Google Scholar 

  93. Shalet, S. M., Toogood, A., Rahim, A. & Brennan, B. M. The diagnosis of growth hormone deficiency in children and adults. Endocr. Rev. 19, 203–223 (1998).

    CAS  PubMed  Google Scholar 

  94. Ranke, M. B. in Diagnostics of Endocrine Function in Children and Adolescents (ed. Ranke, M. B.; Mullis, P.-E.) 102–137 (Karger, 2011).

    Google Scholar 

  95. Albertsson-Wikland, K. & Rosberg, S. Analysis of 24-hour Growth Hormone profiles in children: relation to growth. J. Clin. Endocrinol. Metab. 67, 493–500 (1988).

    CAS  PubMed  Google Scholar 

  96. Blum, W. F., Albertsson-Wikland, K., Rosberg, S. & Ranke, M. B. Serum levels of insulin-like growth factor I (IGF-1) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J. Clin. Endocrinol. Metab. 76, 1610–1616 (1993).

    CAS  PubMed  Google Scholar 

  97. Diamond, F. B. et al. The role of serial sampling in the diagnosis of growth hormone deficiency. Pediatrics 102, 521–524 (1998).

    CAS  PubMed  Google Scholar 

  98. Grimberg, A. et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm. Res. Paediatr. 86, 361–397 (2016).

    CAS  PubMed  Google Scholar 

  99. Rosenfeld, R. G. et al. Diagnostic controversy: the diagnosis of childhood growth hormone deficiency revisited. J. Clin. Endocrinol. Metab. 80, 1532–1540 (1995).

    CAS  PubMed  Google Scholar 

  100. Juul, A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm. IGF Res. 13, 113–170 (2003).

    CAS  PubMed  Google Scholar 

  101. Elmlinger, M. W., Kuhnel, W., Weber, M. M. & Ranke, M. B. Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin. Chem. Lab Med. 42, 654–664 (2004).

    CAS  PubMed  Google Scholar 

  102. Bidlingmaier, M. et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 99, 1712–1721 (2014).

    CAS  PubMed  Google Scholar 

  103. Ranke, M. B. et al. Significance of basal IGF-I, IGFBP-3 and IGFBP-2 measurements in the diagnostics of short stature in children. Horm. Res. 54, 60–68 (2000).

    CAS  PubMed  Google Scholar 

  104. Maghnie, M., Lindberg, A., Koltowska-Haggstrom, M. & Ranke, M. B. Magnetic resonance imaging of CNS in 15,043 children with GH deficiency in KIGS (Pfizer International Growth Database). Eur. J. Endocrinol. 168, 211–217 (2013).

    CAS  PubMed  Google Scholar 

  105. Wit, J. M. et al. Mechanisms in endocrinology: novel genetic causes of short stature. Eur. J. Endocrinol. 174, R145–173 (2016).

    CAS  PubMed  Google Scholar 

  106. Buckway, C. K., Guevara-Aguirre, J., Pratt, K. L., Burren, C. P. & Rosenfeld, R. G. The IGF-I generation test revisited: a marker of GH sensitivity. J. Clin. Endocrinol. Metab. 86, 5176–5183 (2001).

    CAS  PubMed  Google Scholar 

  107. Shalet, S. M., Beardwell, C. G., Pearson, D. & Jones, P. H. The effect of varying doses of cerebral irradiation on growth hormone production in childhood. Clin. Endocrinol. 5, 287–290 (1976).

    CAS  Google Scholar 

  108. Spiliotis, B. E. et al. Growth hormone neurosecretory dysfunction. A treatable cause of short stature. JAMA 251, 2223–2230 (1984).

    CAS  PubMed  Google Scholar 

  109. Darendeliler, F. et al. Reevaluation of growth hormone deficiency during and after growth hormone (GH) treatment: diagnostic value of GH tests and IGF-I and IGFBP-3 measurements. J. Pediatr. Endocrinol. Metab. 17, 1007–1012 (2004).

    CAS  PubMed  Google Scholar 

  110. Ranke, M. B. et al. Baseline characteristics and gender differences in prepubertal children treated with growth hormone in Europe, USA, and Japan: 25 years' KIGS® experience (1987–2012) and review. Horm. Res. Paediatr. 87, 30–41 (2017).

    CAS  PubMed  Google Scholar 

  111. Thomas, M. et al. Prevalence and demographic features of childhood growth hormone deficiency in Belgium during the period 1986–2001. Eur. J. Endocrinol. 151, 67–72 (2004).

    CAS  PubMed  Google Scholar 

  112. Tauber, M. et al. Adolescents with partial growth hormone (GH) deficiency develop alterations of body composition after GH discontinuation and require follow-up. J. Clin. Endocrinol. Metab. 88, 5101–5106 (2003).

    CAS  PubMed  Google Scholar 

  113. Attanasio, A. F. et al. Body composition, IGF-I and IGFBP-3 concentrations as outcome measures in severely GH-deficient (GHD) patients after childhood GH treatment: a comparison with adult onset GHD patients. J. Clin. Endocrinol. Metab. 87, 3368–3372 (2002).

    CAS  PubMed  Google Scholar 

  114. Clayton, P. E. et al. Consensus statement on the management of the GH-treated adolescent in the transition to adult care. Eur. J. Endocrinol. 152, 165–170 (2005).

    CAS  PubMed  Google Scholar 

  115. Raben, M. S. Human growth hormone. Recent Progr. Horm. Res. 15, 71–105 (1959).

    CAS  Google Scholar 

  116. Jorgensen, J. O. et al. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 1, 1221–1225 (1989).

    CAS  PubMed  Google Scholar 

  117. Bengtsson, B. A., Brummer, R. J. & Bosaeus, I. Growth hormone and body composition. Horm. Res. 33 (Suppl. 4), 19–24 (1990).

    PubMed  Google Scholar 

  118. Pappachan, J. M., Raskauskiene, D., Kutty, V. R. & Clayton, R. N. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J. Clin. Endocrinol. Metab. 100, 1405–1411 (2015).

    CAS  PubMed  Google Scholar 

  119. Ho, K. K. & Participants, G. H. D. C. W. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol. 157, 695–700 (2007).

    CAS  PubMed  Google Scholar 

  120. Hoffman, D. M., O'Sullivan, A. J., Baxter, R. C. & Ho, K. K. Y. Diagnosis of growth-hormone deficiency in adults. Lancet 343, 1064–1068 (1994).

    CAS  PubMed  Google Scholar 

  121. Molitch, M. E. et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1587–1609 (2011).

    CAS  PubMed  Google Scholar 

  122. Higham, C. E., Johannsson, G. & Shalet, S. M. Hypopituitarism. Lancet 388, 2403–2415 (2016).

    CAS  PubMed  Google Scholar 

  123. Stochholm, K. & Johannsson, G. Reviewing the safety of GH replacement therapy in adults. Growth Horm. IGF Res. 25, 149–157 (2015).

    CAS  PubMed  Google Scholar 

  124. Soyka, L. F., Ziskind, A. & Crawford, J. D. Treatment of short stature in children and adolescents with human pituitary hormone (Raben). N. Engl. J. Med. 271, 754–764 (1964).

    CAS  PubMed  Google Scholar 

  125. Wit, J. M., Kamp, G. A. & Rikken, B. Spontaneous growth and response to growth hormone treatment in children with growth hormone deficiency and idiopathic short stature. Pediatr. Res. 39, 295–302 (1996).

    CAS  PubMed  Google Scholar 

  126. Kastrup, D. W., Christiansen, J. S., Anderson, J. K. & Orskov, H. Increased growth rate following transfer to daily sc. administration from three weekly im. injection of hGH in growth hormone deficient children. Acta Endocrinol. 104, 148–152 (1983).

    CAS  Google Scholar 

  127. Goeddel, D. V. et al. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281, 544–548 (1979).

    CAS  PubMed  Google Scholar 

  128. Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398 (2004).

    CAS  PubMed  Google Scholar 

  129. Ranke, M. B. & Dowie, J. KIGS and KIMS as tools for evidence-based medicine. Horm. Res. 51 (Suppl. 1), 83–86 (1999).

    CAS  PubMed  Google Scholar 

  130. Allen, D. B. Growth hormone post-marketing surveillance: safety, sales, and the unfinished task ahead. J. Clin. Endocrinol. Metab. 95, 52–55 (2010).

    CAS  PubMed  Google Scholar 

  131. Guyda, H. J. Four decades of growth hormone therapy for short children: what have we achieved? J. Clin. Endocrinol. Metab. 84, 4307–4316 (1999).

    CAS  PubMed  Google Scholar 

  132. Reiter, E. O., Price, D. A., Wilton, P., Albertsson-Wikland, K. & Ranke, M. B. Effect of growth hormone (GH) treatment on the near-final height of 1258 patients with idiopathic GH deficiency: analysis of a large international database. J. Clin. Endocrinol. Metab. 91, 2047–2054 (2006).

    CAS  PubMed  Google Scholar 

  133. Wit, J. M. Growth hormone therapy. Best. Pract. Res. Clin. Endocrinol. Metab. 16, 483–503 (2002).

    CAS  PubMed  Google Scholar 

  134. Blum, W. F. et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: two-year results of a randomized, controlled, multicenter trial. J. Clin. Endocrinol. Metab. 92, 219–228 (2007).

    CAS  PubMed  Google Scholar 

  135. Schaefer, F., Chen, Y., Tsao, T., Nouri, P. & Rabkin, R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J. Clin. Invest. 108, 467–475 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249–1263 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Binder, G., Neuer, K., Ranke, M. B. & Wittekindt, N. E. PTPN11 mutations are associated with mild growth hormone resistance in individuals with Noonan syndrome. J. Clin. Endocrinol. Metab. 90, 5377–5381 (2005).

    CAS  PubMed  Google Scholar 

  138. Byrne, T. A. et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann. Surg. 242, 655–661 (2005).

    PubMed  PubMed Central  Google Scholar 

  139. Mulligan, K., Grunfeld, C., Hellerstein, M. K., Neese, R. A. & Schambelan, M. Anabolic effects of recombinant human growth hormone in patients with wasting associated with human immunodeficiency virus infection. J. Clin. Endocrinol. Metab. 77, 956–962 (1993).

    CAS  PubMed  Google Scholar 

  140. Preece, M. A., Tanner, J. M., Whitehouse, R. H. & Cameron, N. Dose dependence of growth response to human growth hormone in growth hormone deficiency. J. Clin. Endocrinol. Metab. 42, 477–483 (1976).

    CAS  PubMed  Google Scholar 

  141. Aceto, T. Jr. et al. Collaborative study of the effects of human growth hormone in growth hormone deficiency. I. First year of therapy. J. Clin. Endocrinol. Metab. 35, 483–496 (1972).

    PubMed  Google Scholar 

  142. Sas, T. C. et al. Adult height in children with growth hormone deficiency: a randomized, controlled, growth hormone dose-response trial. Horm. Res. Paediatr. 74, 172–181 (2010).

    CAS  PubMed  Google Scholar 

  143. Underwood, L. E., Voina, S. J. & Van Wyk, J. J. Restoration of growth by human growth hormone (Roos) in hypopituitary dwarfs immunized by other human growth hormone preparations: clinical and immunological studies. J. Clin. Endocrinol. Metab. 38, 288–297 (1974).

    CAS  PubMed  Google Scholar 

  144. Hintz, R. L. The prismatic case of Creutzfeldt-Jakob disease associated with pituitary growth hormone treatment. J. Clin. Endocrinol. Metab. 80, 2298–2301 (1995).

    CAS  PubMed  Google Scholar 

  145. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Edwards, I. R. & Aronson, J. K. Adverse drug reactions: definitions, diagnosis, and management. Lancet 356, 1255–1259 (2000).

    CAS  PubMed  Google Scholar 

  147. Wilton, P. in Growth hormone therapy in Pediatrics — 20 years of KIGS (eds Ranke, M. B., Price, D. A. & Reiter, E. O.) 432–441 (Karger, 2007).

    Google Scholar 

  148. Bell, J. et al. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab. 95, 167–177 (2010).

    CAS  PubMed  Google Scholar 

  149. Deodati, A., Ferroli, B. B. & Cianfarani, S. Association between growth hormone therapy and mortality, cancer and cardiovascular risk: systematic review and meta-analysis. Growth Horm. IGF Res. 24, 105–111 (2014).

    CAS  PubMed  Google Scholar 

  150. Swerdlow, A. J. et al. Cancer risks in patients treated with growth hormone in childhood: the SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 102, 1661–1672 (2017).

    PubMed  Google Scholar 

  151. Allen, D. B. et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur. J. Endocrinol. 174, P1–P9 (2016).

    CAS  PubMed  Google Scholar 

  152. Divall, S. A. & Radovick, S. Growth hormone and treatment controversy; long term safety of rGH. Curr. Pediatr. Rep. 1, 128–132 (2013).

    PubMed  PubMed Central  Google Scholar 

  153. Frasier, S. D. The not-so-good old days: working with pituitary growth hormone in North America, 1956 to 1985. J. Pediatr. 131, S1–S4 (1997).

    CAS  PubMed  Google Scholar 

  154. Ranke, M. B. et al. Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses. Horm. Res. Paediatr. 79, 51–67 (2013).

    CAS  PubMed  Google Scholar 

  155. Stevens, A. et al. Validating genetic markers of response to recombinant human growth hormone in children with growth hormone deficiency and Turner syndrome: the PREDICT validation study. Eur. J. Endocrinol. 175, 633–643 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cohen, P. et al. Variable degree of growth hormone (GH) and insulin-like growth factor (IGF) sensitivity in children with idiopathic short stature compared with GH-deficient patients: evidence from an IGF-based dosing study of short children. J. Clin. Endocrinol. Metab. 95, 2089–2098 (2010).

    CAS  PubMed  Google Scholar 

  157. Cohen, P. et al. Dose-sparing and safety-enhancing effects of an IGF-I-based dosing regimen in short children treated with growth hormone in a 2-year randomized controlled trial: therapeutic and pharmacoeconomic considerations. Clin. Endocrinol. 81, 71–76 (2014).

    CAS  Google Scholar 

  158. Kaspers, S. R. et al. Implications of a data-driven approach to treatment with growth hormone in children with growth hormone deficiency and Turner syndrome. Appl. Health Econ. Health Policy 11, 237–249 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Fisher, B. G. & Acerini, C. L. Understanding the growth hormone therapy adherence paradigm: a systematic review. Horm. Res. Paediatr. 79, 189–196 (2013).

    CAS  PubMed  Google Scholar 

  160. Christiansen, J. S. et al. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations. Eur. J. Endocrinol. 174, C1–C8 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Suga, H. Making pituitary hormone-producing cells in a dish [Review]. Endocr. J. 63, 669–680 (2016).

    CAS  PubMed  Google Scholar 

  162. Miletta, M. C., Petkovic, V., Eble, A., Fluck, C. E. & Mullis, P. E. Rescue of isolated GH deficiency type II (IGHD II) via pharmacologic modulation of GH-1 splicing. Endocrinology 157, 3972–3982 (2016).

    CAS  PubMed  Google Scholar 

  163. Trainer, P. J. et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N. Engl. J. Med. 342, 1171–1177 (2000).

    CAS  PubMed  Google Scholar 

  164. Wilkinson, I. R. et al. A long-acting GH receptor antagonist through fusion to GH binding protein. Sci. Rep. 6, 35072 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Corpas, E., Harman, S. M. & Blackman, M. R. Human growth hormone and human aging. Endocr. Rev. 14, 20–39 (1993).

    CAS  PubMed  Google Scholar 

  166. Rudman, D. et al. Effect of human growth hormone in men over 60 years old. N. Engl. J. Med. 323, 1–6 (1990).

    CAS  PubMed  Google Scholar 

  167. Bartke, A., Sun, L., Fang, Y. & Hill, C. Growth hormone actions during development influence adult phenotype and longevity. Exp. Gerontol. 86, 22–27 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Laron, Z., Kauli, R., Lapkina, L. & Werner, H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat. Res. Rev. Mutat. Res. 772, 123–133 (2017).

    CAS  PubMed  Google Scholar 

  169. Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438–3442 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Smith, P. E. Hypophysectomy and a replacement therapy in the rat. Am. J. Anat. 45, 205–271 (1930).

    Google Scholar 

  171. Laron, Z., Pertzelan, A. & Mannheimer, S. Genetic pituitary dwarfism with high serum concentation of growth hormone — a new inborn error of metabolism? Isr. J. Med. Sci. 2, 152–155 (1966).

    CAS  PubMed  Google Scholar 

  172. Baumann, G., Stolar, M. W., Amburn, K., Barsano, C. P. & DeVries, B. C. A specific growth hormone-binding protein in human plasma: initial characterization. J. Clin. Endocrinol. Metab. 62, 134–141 (1986).

    CAS  PubMed  Google Scholar 

  173. Leung, D. W. et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330, 537–543 (1987).

    CAS  PubMed  Google Scholar 

  174. Laron, Z., Klinger, B., Erser, B. & Asin, S. Effects of acute administration of insulin-like growth factor I in patients with Laron-type dwarfism. Lancet 2, 1170–1172 (1988).

    CAS  PubMed  Google Scholar 

  175. Chen, W. Y., Wight, D. C., Wagner, T. E. & Kopchick, J. J. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc. Natl Acad. Sci. USA 87, 5061–5065 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Brooks, A. J. & Waters, M. J. The growth hormone receptor: mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 6, 515–525 (2010).

    CAS  PubMed  Google Scholar 

  177. Woods, K. A., Camacho-Hubner, C., Savage, M. O. & Clark, A. J. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 335, 1363–1367 (1996).

    CAS  PubMed  Google Scholar 

  178. Ranke, M. B. et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. J. Clin. Endocrinol. Metab. 84, 1174–1183 (1999).

    CAS  PubMed  Google Scholar 

  179. Liu, J. L., Yakar, S. & LeRoith, D. Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc. Soc. Exp. Biol. Med. 223, 344–351 (2000).

    CAS  PubMed  Google Scholar 

  180. Abuzzahab, M. J. et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 349, 2211–2222 (2003).

    CAS  PubMed  Google Scholar 

  181. Kofoed, E. M. et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 349, 1139–1147 (2003).

    CAS  PubMed  Google Scholar 

  182. Domene, H. M. et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 350, 570–577 (2004).

    CAS  PubMed  Google Scholar 

  183. Begemann, M. et al. Paternally inherited IGF2 mutation and growth restriction. N. Engl. J. Med. 373, 349–356 (2015).

    CAS  PubMed  Google Scholar 

  184. Kristrom, B., Jansson, C., Rosberg, S. & Albertsson-Wikland, K. Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in short children with various GH secretion capacities. J. Clin. Endocrinol. Metab. 82, 2889–2898 (1997).

    CAS  PubMed  Google Scholar 

  185. Wikland, K. A., Kristrom, B., Rosberg, S., Svensson, B. & Nierop, A. F. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr. Res. 48, 475–484 (2000).

    CAS  PubMed  Google Scholar 

  186. Schonau, E. et al. A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur. J. Endocrinol. 144, 13–20 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to L. Van den Brande and J. S. Parks, who inspired them as young scientists.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this manuscript.

Corresponding author

Correspondence to Michael B. Ranke.

Ethics declarations

Competing interests

M.B.R. declares that he is a member of the Pfizer advisory board for iGRO and has received honoraria for speaking from Pfizer and Sandoz. J.M.W. declares that he is a member of the Merck advisory board and has received honoraria for speaking from Sandoz, Merck-Serono, Pfizer, Versartis, Eli Lilly, Novo Nordisk and JCR.

Related links

PowerPoint slides

Supplementary information

Supplementary Table S1

Genes associated with disorders of the GH-IGF axis (PDF 395 kb)

Supplementary Box S2

Non-GH deficient medical conditions accepted as indications for GH treatment (PDF 305 kb)

Glossary

Hypothalamo–pituitary portal vessels

A system of blood vessels connecting the hypothalamus with the anterior pituitary.

Isolated GHD

(IGHD). Defined by the selective lack of pituitary growth hormone secretion in contrast to normal secretion of other pituitary hormones.

Agammaglobulinaemia

A term for deficiencies of immunoglobulins that electrophoretically migrate into the γ-fraction.

Laron syndrome

A growth disorder due to an insensitivity to growth hormone caused by a mutation in the growth hormone receptor.

Midparental height

(MPH). The average height of the father and mother after converting them to standard deviation scores.

International reference preparations

(IRPs). International standard preparations (for example, for human growth hormone) are established by WHO experts (National Institute for Biological Standards and Control (NIBSC)).

Turner syndrome

A dysmorphic syndrome with short stature caused by the (partial) loss of one X chromosome in females.

Idiopathic short stature

(ISS). Refers to short stature not explained by defined causes.

Chronic renal insufficiency

A term describing a severe form of renal failure that is associated with growth failure in children.

Prader–Willi syndrome

A congenital syndrome associated with severe obesity, mental retardation and short stature (OMIM 301900).

Noonan syndrome

A dysmorphic syndrome associated with phenotypical congenital heart defects and short stature (OMIM 615355).

Short bowel syndrome

The malabsorption disorder caused by the missing of functional small intestine.

HIV wasting syndrome

The severe loss of body mass due to an infection with HIV.

Creutzfeldt–Jakob disease

A prion-transmitted degenerative encephalopathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranke, M., Wit, J. Growth hormone — past, present and future. Nat Rev Endocrinol 14, 285–300 (2018). https://doi.org/10.1038/nrendo.2018.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2018.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing