Key Points
-
The growth hormone (GH)âinsulin-like growth factor (IGF) axis consists of central neuro-anatomical, regulatory and genetic systems, and the peripheral intracellular GH signalling pathway
-
The introduction of recombinant human GH (rhGH) in 1985 ended the phase of pituitary-derived human growth hormone (hGH) and its associated limitations and risks, opening the possibility of widespread clinical use
-
GH deficiency (GHD) is a syndrome with many different causes and is associated with alterations in growth, body composition and metabolism
-
In some non-GHD short stature disorders, rhGH has been proved effective and is used as a surrogate for the currently unknown, pathophysiologically appropriate treatment
-
Risks of hGH therapy might relate to its direct effects on growth, its anti-insulin action and its cell-proliferating activity; however, the safety profile of rhGH in children and adults is good
-
Current innovative treatment approaches relate to personalizing conventional rhGH, developing long-acting GH preparations, the prospect of gene therapy, GHâGH receptor antagonists and, potentially, new indications
Abstract
Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958â1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH â in conjunction with insulin-like growth factors (IGFs) â and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GHâIGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GHâIGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Brown, P. et al. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901â907 (2012).
Navarro, R., Dunn, J. D., Lee, P. A., Owens, G. M. & Rapaport, R. Translating clinical guidelines into practice: the effective and appropriate use of human growth hormone. Am. J. Manag. Care 19, s281â289 (2013).
Wit, J. M. et al. Personalized approach to growth hormone treatment: clinical use of growth prediction models. Horm. Res. Paediatr. 79, 257â270 (2013).
Kopchick, J. J. Discovery and development of a new class of drugs: GH antagonists. J. Endocrinol. Invest. 26, 16â26 (2003).
Enderle, A. Dwarfism and gigantism in historical picture postcards. J. R. Soc. Med. 91, 273â278 (1998).
de Herder, W. W. Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886). Pituitary 12, 236â244 (2009).
Marie, P. Sur deux cas d'acromégalie. Revue Med. Paris 6, 297â333 (1886).
Fritsche, C. F. & Klebs, E. Ein Beitrag zur Pathologie des Riesenwuchses. Klinische und Pathologisch Anatomische Untersuchungen (Vogel, FCW, 1884).
Minkowski, O. Ãbereinen fall von akromegalie. Berlin Klin. Wochenschr. 24, 371â374 (1887).
Babinski, J. F. Tumeur du corps pituitaire sans acromégalie et avec arrêt de développement des organes génitaux. Revue Neurol. 8, 531â533 (1900).
Fröhlich, A. Ein fall von tumor der hypophysis cerebri ohne akromegalie. Wiener Klinische Rundschau 15, 833â836 (1901).
Cushing, H. The Pituitary Body and its Disorders. Clinical States Produced by Disorders of the Hypophysis Cerebri (J. B. Lippincott, 1912).
Grumbach, M. M. Herbert McLean Evans, revolutionary in modern endocrinology: a tale of great expectations. J. Clin. Endocrinol. Metab. 55, 1240â1247 (1982).
Evans, H. M. & Long, J. A. The effect of the anterior lobe administered intraperitoneally upon growth, maturity, and oestrus cicles of the rat. Anat. Res. 21, 62â63 (1921).
Houssay, B. A. & Biassotti, A. La diabetes pancreatica de los perros hipophisioprivos. Rec. Soc. Argent. Biol. 6, 251â296 (1930).
Ketterer, B., Randle, P. J. & Young, F. G. The pituitary growth hormone and metabolic processes. Ergeb Physiol. 49, 127â211 (1957).
Li, C. H. & Evans, H. M. The isolation of pituitary growth hormone. Science 99, 183â184 (1944).
Li, C. H. & Dixon, J. S. Human pituitary growth hormone. 32. The primary structure of the hormone: revision. Arch. Biochem. Biophys. 146, 233â236 (1971).
Knobil, E. & Greep, R. O. The physiology of growth hormone with particular reference to its action in the Rhesus monkey and the âspecies specificityâ problem. Recent Progr. Horm. Res. 15, 1â58 (1959).
Souza, S. C. et al. A single arginine residue determines species specificity of the human growth hormone receptor. Proc. Natl Acad. Sci. USA 92, 959â963 (1995).
Beck, J. C., Mc, G. E., Dyrenfurth, I. & Venning, E. H. The metabolic effects of human and monkey growth hormone in man. Ann. Intern. Med. 49, 1090â1105 (1958).
Raben, M. S. Treatment of a pituitary dwarf with human growth hormone. J. Clin. Endocrinol. Metab. 18, 901â903 (1958).
Blizzard, R. M. History of growth hormone therapy. Indian J. Pediatr. 79, 87â91 (2012).
Raiti, S. in Human Growth Hormone (ed. Raiti, S. & Tolman, R. A.) 1â12 (Plenum Publishing Corporation, 1986).
Roos, P., Fevold, H. R. & Gemzell, C. A. Preparation of human growth hormone by gel filtration. Biochim. Biophys. Acta 74, 525â531 (1963).
Harris, G. W. Hypothalamus and pituitary gland with special reference to the posterior pituitary and labour. Br. Med. J. 1, 339â342 (1948).
Davis, S. W. et al. Pituitary gland development and disease: from stem cell to hormone production. Curr. Top. Dev. Biol. 106, 1â47 (2013).
McCabe, M. J., Alatzoglou, K. S. & Dattani, M. T. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract. Res. Clin. Endocrinol. Metab. 25, 115â124 (2011).
Dattani, M. T. et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 19, 125â133 (1998).
Netchine, I. et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25, 182â186 (2000).
Reynaud, R. et al. Pituitary stalk interruption syndrome in 83 patients: novel HESX1 mutation and severe hormonal prognosis in malformative forms. Eur. J. Endocrinol. 164, 457â465 (2011).
Pfaffle, R. W. et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257, 1118â1121 (1992).
Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18, 147â149 (1998).
Dusatkova, P. et al. Genesis of two most prevalent PROP1 gene variants causing combined pituitary hormone deficiency in 21 populations. Eur. J. Hum. Genet. 24, 415â420 (2016).
Joustra, S. D. et al. IGSF1 deficiency: lessons from an extensive case series and recommendations for clinical management. J. Clin. Endocrinol. Metab. 101, 1627â1636 (2016).
Abdel-Meguid, S. S. et al. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc. Natl Acad. Sci. USA 84, 6434â6437 (1987).
de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306â312 (1992).
Barsh, G. S., Seeburg, P. H. & Gelinas, R. E. The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acids Res. 11, 3939â3958 (1983).
Baumann, G. P. Growth hormone isoforms. Growth Horm. IGF Res. 19, 333â340 (2009).
Phillips, J. A., I. I. I., Hjelle, B. L., Seeburg, P. H. & Zachmann, M. Molecular basis for familial isolated growth hormone deficiency. Proc. Natl Acad. Sci. USA 78, 6372â6375 (1981).
Mullis, P. E. Genetics of isolated growth hormone deficiency. J. Clin. Res. Pediatr. Endocrinol. 2, 52â62 (2010).
Alatzoglou, K. S. et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J. Clin. Endocrinol. Metab. 94, 3191â3199 (2009).
Binder, G., Brown, M. & Parks, J. S. Mechanisms responsible for dominant expression of human growth hormone gene mutations. J. Clin. Endocrinol. Metab. 81, 4047â4050 (1996).
Stewart, D. M., Tian, L., Notarangelo, L. D. & Nelson, D. L. X-Linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol. Res. 40, 262â270 (2008).
Kowarski, A. A., Schneider, J., Ben-Galim, E., Weldon, V. V. & Daughaday, W. H. Growth failure with normal serum RIA-GH and low somatomedin activity: somatomedin restoration and growth acceleration after exogenous GH. J. Clin. Endocrinol. Metab. 47, 461â464 (1978).
Takahashi, Y. et al. Biologically inactive growth hormone caused by an amino acid substitution. J. Clin. Invest. 100, 1159â1165 (1997).
Rivier, J., Spiess, J., Thorner, M. & Vale, W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300, 276â278 (1982).
Guillemin, R. et al. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218, 585â587 (1982).
Mayo, K. E., Miller, T. L., DeAlmeida, V., Zheng, J. & Godfrey, P. A. The growth-hormone-releasing hormone receptor: signal transduction, gene expression, and physiological function in growth regulation. Ann. NY Acad. Sci. 805, 184â203 (1996).
Wajnrajch, M. P., Gertner, J. M., Harbison, M. D., Chua, S. C. Jr & Leibel, R. L. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat. Genet. 12, 88â90 (1996).
Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77â79 (1973).
Yamada, Y. et al. Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc. Natl Acad. Sci. USA 89, 251â255 (1992).
Thorner, M. O. et al. Physiological role of somatostatin on growth hormone regulation in humans. Metabolism 39, 40â42 (1990).
Corleto, V. D. Somatostatin and the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 17, 63â68 (2010).
Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656â660 (1999).
Howard, A. D. et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273, 974â977 (1996).
Steyn, F. J., Tolle, V., Chen, C. & Epelbaum, J. Neuroendocrine regulation of growth hormone secretion. Compr. Physiol. 6, 687â735 (2016).
Veldhuis, J. D., Keenan, D. M. & Pincus, S. M. Motivations and methods for analyzing pulsatile hormone secretion. Endocr. Rev. 29, 823â864 (2008).
Bonnefont, X. et al. Revealing the large-scale network organization of growth hormone-secreting cells. Proc. Natl Acad. Sci. USA 102, 16880â16885 (2005).
Hindmarsh, P. C., Fall, C. H., Pringle, P. J., Osmond, C. & Brook, C. G. Peak and trough growth hormone concentrations have different associations with the insulin-like growth factor axis, body composition, and metabolic parameters. J. Clin. Endocrinol. Metab. 82, 2172â2176 (1997).
Waters, M. J. & Brooks, A. J. JAK2 activation by growth hormone and other cytokines. Biochem. J. 466, 1â11 (2015).
Boguszewski, C. L., Barbosa, E. J. L., Svensson, P. A., Johannsson, G. & Glad, C. A. M. Mechanisms in endocrinology: clinical and pharmacogenetic aspects of the growth hormone receptor polymorphism. Eur. J. Endocrinol. 177, R309âR321 (2017).
Godowski, P. J. et al. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc. Natl Acad. Sci. USA 86, 8083â8087 (1989).
Baumann, G. Growth hormone binding protein. The soluble growth hormone receptor. Minerva Endocrinol. 27, 265â276 (2002).
Aalbers, A. M. et al. Extreme elevation of serum growth hormone-binding protein concentrations resulting from a novel heterozygous splice site mutation of the growth hormone receptor gene. Horm. Res. 71, 276â284 (2009).
Waters, M. J. et al. Signal transduction by the growth hormone receptor. Proc. Soc. Exp. Biol. Med. 206, 216â220 (1994).
Kopchick, J. J. & Andry, J. M. Growth hormone (GH), GH receptor, and signal transduction. Mol. Genet. Metab. 71, 293â314 (2000).
Lanning, N. J. & Carter-Su, C. Recent advances in growth hormone signaling. Rev. Endocr. Metab. Disord. 7, 225â235 [doi] (2006).
Frank, S. J. & Fuchs, S. Y. Modulation of growth hormone receptor abundance and function: roles for the ubiquitin-proteasome system. Biochim. Biophys. Acta 1782, 785â794 (2008).
Re, R. N. & Cook, J. L. The intracrine hypothesis: an update. Regul. Pept. 133, 1â9 (2006).
Salmon, W. D. & Daughaday, W. H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab Clin. Med. 68, 825â836 (1957).
Rinderknecht, E. & Humbel, R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253, 2769â2776 (1978).
Rinderknecht, E. & Humbel, R. E. Primary structure of human insulin-like growth factor II. FEBS Lett. 89, 283â286 (1978).
Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824â854 (2002).
Zapf, J., Waldvogel, M. & Froesch, E. R. Binding of nonsuppressible insulinlike activity to human serum. Evidence for a carrier protein. Arch. Biochem. Biophys. 168, 638â645 (1975).
Leroith, D., Werner, H., Beitner-Johnson, D. & Roberts Jr, C. T. Molecular and cellular aspects of the insulin-like growth factor 1 receptor. Endocr. Rev. 16, 143â163 (1995).
Baxter, R. C., Martin, J. L. & Beniac, V. A. High molecular weight insulin-like growth factor binding protein complex. Purification and properties of the acid-labile subunit from human serum. J. Biol. Chem. 264, 11843â11848 (1989).
Ranke, M. B. & Elmlinger, M. Functional role of insulin-like growth factor binding proteins. Horm. Res. 48 (Suppl. 4), 9â15 (1997).
Dauber, A. et al. Mutations in pregnancy-associated plasma protein A2 cause short stature due to low IGF-I availability. EMBO Mol. Med. 8, 363â374 (2016).
Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73â82 (1993).
Yakar, S., Pennisi, P., Wu, Y., Zhao, H. & Leroith, D. Clinical relevance of systemic and local IGF-I. Endocr. Dev. 9, 11â16 (2005).
GH Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J. Clin. Endocrinol. Metab. 85, 3990â3993 (2000).
Wit, J. M. & van Unen, H. Growth of infants with neonatal growth hormone deficiency. Arch. Dis. Child 67, 920â924 (1992).
Evans, H. M. S., M. E., Marx, W. & Kibrick, E. A. Bioassay of pituitary growth hormone. Width of proximal epiphyseal cartilage of tibia in hypo-physectomized rats. Endocrinology 21, 13â16 (1943).
Glick, S. M., Roth, J., Yalow, R. S. & Berson, S. A. Immunoassay of human growth hormone in plasma. Nature 199, 784â787 (1963).
Langkamp, M., Weber, K. & Ranke, M. B. Human growth hormone measurement by means of a sensitive ELISA of whole blood spots on filter paper. Growth Horm. IGF Res. 18, 526â532 (2008).
Clemmons, D. R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 57, 555â559 (2011).
Arsene, C. G., Kratzsch, J. & Henrion, A. Mass spectrometry - an alternative in growth hormone measurement. Bioanalysis 6, 2391â2402 (2014).
Junnila, R. K., Strasburger, C. J. & Bidlingmaier, M. Pitfalls of insulin-like growth factor-i and growth hormone assays. Endocrinol. Metab. Clin. North Am. 44, 27â34 (2015).
Bristow, A. F. International standards for growth hormone. Horm. Res. 51 (Suppl. 1), 7â12 (1999).
Roth, J., Glick, S. M. & Yalow, R. S. and Bersonsa. Hypoglycemia: a potent stimulus to secretion of growth hormone. Science 140, 987â988 (1963).
Frasier, S. D. The serum growth-hormone response to hypoglycemia in dwarfism. J. Pediatr. 71, 625â638 (1967).
Shalet, S. M., Toogood, A., Rahim, A. & Brennan, B. M. The diagnosis of growth hormone deficiency in children and adults. Endocr. Rev. 19, 203â223 (1998).
Ranke, M. B. in Diagnostics of Endocrine Function in Children and Adolescents (ed. Ranke, M. B.; Mullis, P.-E.) 102â137 (Karger, 2011).
Albertsson-Wikland, K. & Rosberg, S. Analysis of 24-hour Growth Hormone profiles in children: relation to growth. J. Clin. Endocrinol. Metab. 67, 493â500 (1988).
Blum, W. F., Albertsson-Wikland, K., Rosberg, S. & Ranke, M. B. Serum levels of insulin-like growth factor I (IGF-1) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J. Clin. Endocrinol. Metab. 76, 1610â1616 (1993).
Diamond, F. B. et al. The role of serial sampling in the diagnosis of growth hormone deficiency. Pediatrics 102, 521â524 (1998).
Grimberg, A. et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Horm. Res. Paediatr. 86, 361â397 (2016).
Rosenfeld, R. G. et al. Diagnostic controversy: the diagnosis of childhood growth hormone deficiency revisited. J. Clin. Endocrinol. Metab. 80, 1532â1540 (1995).
Juul, A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm. IGF Res. 13, 113â170 (2003).
Elmlinger, M. W., Kuhnel, W., Weber, M. M. & Ranke, M. B. Reference ranges for two automated chemiluminescent assays for serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3). Clin. Chem. Lab Med. 42, 654â664 (2004).
Bidlingmaier, M. et al. Reference intervals for insulin-like growth factor-1 (igf-i) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 99, 1712â1721 (2014).
Ranke, M. B. et al. Significance of basal IGF-I, IGFBP-3 and IGFBP-2 measurements in the diagnostics of short stature in children. Horm. Res. 54, 60â68 (2000).
Maghnie, M., Lindberg, A., Koltowska-Haggstrom, M. & Ranke, M. B. Magnetic resonance imaging of CNS in 15,043 children with GH deficiency in KIGS (Pfizer International Growth Database). Eur. J. Endocrinol. 168, 211â217 (2013).
Wit, J. M. et al. Mechanisms in endocrinology: novel genetic causes of short stature. Eur. J. Endocrinol. 174, R145â173 (2016).
Buckway, C. K., Guevara-Aguirre, J., Pratt, K. L., Burren, C. P. & Rosenfeld, R. G. The IGF-I generation test revisited: a marker of GH sensitivity. J. Clin. Endocrinol. Metab. 86, 5176â5183 (2001).
Shalet, S. M., Beardwell, C. G., Pearson, D. & Jones, P. H. The effect of varying doses of cerebral irradiation on growth hormone production in childhood. Clin. Endocrinol. 5, 287â290 (1976).
Spiliotis, B. E. et al. Growth hormone neurosecretory dysfunction. A treatable cause of short stature. JAMA 251, 2223â2230 (1984).
Darendeliler, F. et al. Reevaluation of growth hormone deficiency during and after growth hormone (GH) treatment: diagnostic value of GH tests and IGF-I and IGFBP-3 measurements. J. Pediatr. Endocrinol. Metab. 17, 1007â1012 (2004).
Ranke, M. B. et al. Baseline characteristics and gender differences in prepubertal children treated with growth hormone in Europe, USA, and Japan: 25 years' KIGS® experience (1987â2012) and review. Horm. Res. Paediatr. 87, 30â41 (2017).
Thomas, M. et al. Prevalence and demographic features of childhood growth hormone deficiency in Belgium during the period 1986â2001. Eur. J. Endocrinol. 151, 67â72 (2004).
Tauber, M. et al. Adolescents with partial growth hormone (GH) deficiency develop alterations of body composition after GH discontinuation and require follow-up. J. Clin. Endocrinol. Metab. 88, 5101â5106 (2003).
Attanasio, A. F. et al. Body composition, IGF-I and IGFBP-3 concentrations as outcome measures in severely GH-deficient (GHD) patients after childhood GH treatment: a comparison with adult onset GHD patients. J. Clin. Endocrinol. Metab. 87, 3368â3372 (2002).
Clayton, P. E. et al. Consensus statement on the management of the GH-treated adolescent in the transition to adult care. Eur. J. Endocrinol. 152, 165â170 (2005).
Raben, M. S. Human growth hormone. Recent Progr. Horm. Res. 15, 71â105 (1959).
Jorgensen, J. O. et al. Beneficial effects of growth hormone treatment in GH-deficient adults. Lancet 1, 1221â1225 (1989).
Bengtsson, B. A., Brummer, R. J. & Bosaeus, I. Growth hormone and body composition. Horm. Res. 33 (Suppl. 4), 19â24 (1990).
Pappachan, J. M., Raskauskiene, D., Kutty, V. R. & Clayton, R. N. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J. Clin. Endocrinol. Metab. 100, 1405â1411 (2015).
Ho, K. K. & Participants, G. H. D. C. W. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol. 157, 695â700 (2007).
Hoffman, D. M., O'Sullivan, A. J., Baxter, R. C. & Ho, K. K. Y. Diagnosis of growth-hormone deficiency in adults. Lancet 343, 1064â1068 (1994).
Molitch, M. E. et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1587â1609 (2011).
Higham, C. E., Johannsson, G. & Shalet, S. M. Hypopituitarism. Lancet 388, 2403â2415 (2016).
Stochholm, K. & Johannsson, G. Reviewing the safety of GH replacement therapy in adults. Growth Horm. IGF Res. 25, 149â157 (2015).
Soyka, L. F., Ziskind, A. & Crawford, J. D. Treatment of short stature in children and adolescents with human pituitary hormone (Raben). N. Engl. J. Med. 271, 754â764 (1964).
Wit, J. M., Kamp, G. A. & Rikken, B. Spontaneous growth and response to growth hormone treatment in children with growth hormone deficiency and idiopathic short stature. Pediatr. Res. 39, 295â302 (1996).
Kastrup, D. W., Christiansen, J. S., Anderson, J. K. & Orskov, H. Increased growth rate following transfer to daily sc. administration from three weekly im. injection of hGH in growth hormone deficient children. Acta Endocrinol. 104, 148â152 (1983).
Goeddel, D. V. et al. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281, 544â548 (1979).
Wurm, F. M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393â1398 (2004).
Ranke, M. B. & Dowie, J. KIGS and KIMS as tools for evidence-based medicine. Horm. Res. 51 (Suppl. 1), 83â86 (1999).
Allen, D. B. Growth hormone post-marketing surveillance: safety, sales, and the unfinished task ahead. J. Clin. Endocrinol. Metab. 95, 52â55 (2010).
Guyda, H. J. Four decades of growth hormone therapy for short children: what have we achieved? J. Clin. Endocrinol. Metab. 84, 4307â4316 (1999).
Reiter, E. O., Price, D. A., Wilton, P., Albertsson-Wikland, K. & Ranke, M. B. Effect of growth hormone (GH) treatment on the near-final height of 1258 patients with idiopathic GH deficiency: analysis of a large international database. J. Clin. Endocrinol. Metab. 91, 2047â2054 (2006).
Wit, J. M. Growth hormone therapy. Best. Pract. Res. Clin. Endocrinol. Metab. 16, 483â503 (2002).
Blum, W. F. et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: two-year results of a randomized, controlled, multicenter trial. J. Clin. Endocrinol. Metab. 92, 219â228 (2007).
Schaefer, F., Chen, Y., Tsao, T., Nouri, P. & Rabkin, R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J. Clin. Invest. 108, 467â475 (2001).
Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249â1263 (2015).
Binder, G., Neuer, K., Ranke, M. B. & Wittekindt, N. E. PTPN11 mutations are associated with mild growth hormone resistance in individuals with Noonan syndrome. J. Clin. Endocrinol. Metab. 90, 5377â5381 (2005).
Byrne, T. A. et al. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome: a prospective, randomized, placebo-controlled, double-blind clinical trial. Ann. Surg. 242, 655â661 (2005).
Mulligan, K., Grunfeld, C., Hellerstein, M. K., Neese, R. A. & Schambelan, M. Anabolic effects of recombinant human growth hormone in patients with wasting associated with human immunodeficiency virus infection. J. Clin. Endocrinol. Metab. 77, 956â962 (1993).
Preece, M. A., Tanner, J. M., Whitehouse, R. H. & Cameron, N. Dose dependence of growth response to human growth hormone in growth hormone deficiency. J. Clin. Endocrinol. Metab. 42, 477â483 (1976).
Aceto, T. Jr. et al. Collaborative study of the effects of human growth hormone in growth hormone deficiency. I. First year of therapy. J. Clin. Endocrinol. Metab. 35, 483â496 (1972).
Sas, T. C. et al. Adult height in children with growth hormone deficiency: a randomized, controlled, growth hormone dose-response trial. Horm. Res. Paediatr. 74, 172â181 (2010).
Underwood, L. E., Voina, S. J. & Van Wyk, J. J. Restoration of growth by human growth hormone (Roos) in hypopituitary dwarfs immunized by other human growth hormone preparations: clinical and immunological studies. J. Clin. Endocrinol. Metab. 38, 288â297 (1974).
Hintz, R. L. The prismatic case of Creutzfeldt-Jakob disease associated with pituitary growth hormone treatment. J. Clin. Endocrinol. Metab. 80, 2298â2301 (1995).
Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363â13383 (1998).
Edwards, I. R. & Aronson, J. K. Adverse drug reactions: definitions, diagnosis, and management. Lancet 356, 1255â1259 (2000).
Wilton, P. in Growth hormone therapy in Pediatrics â 20 years of KIGS (eds Ranke, M. B., Price, D. A. & Reiter, E. O.) 432â441 (Karger, 2007).
Bell, J. et al. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab. 95, 167â177 (2010).
Deodati, A., Ferroli, B. B. & Cianfarani, S. Association between growth hormone therapy and mortality, cancer and cardiovascular risk: systematic review and meta-analysis. Growth Horm. IGF Res. 24, 105â111 (2014).
Swerdlow, A. J. et al. Cancer risks in patients treated with growth hormone in childhood: the SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 102, 1661â1672 (2017).
Allen, D. B. et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur. J. Endocrinol. 174, P1âP9 (2016).
Divall, S. A. & Radovick, S. Growth hormone and treatment controversy; long term safety of rGH. Curr. Pediatr. Rep. 1, 128â132 (2013).
Frasier, S. D. The not-so-good old days: working with pituitary growth hormone in North America, 1956 to 1985. J. Pediatr. 131, S1âS4 (1997).
Ranke, M. B. et al. Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses. Horm. Res. Paediatr. 79, 51â67 (2013).
Stevens, A. et al. Validating genetic markers of response to recombinant human growth hormone in children with growth hormone deficiency and Turner syndrome: the PREDICT validation study. Eur. J. Endocrinol. 175, 633â643 (2016).
Cohen, P. et al. Variable degree of growth hormone (GH) and insulin-like growth factor (IGF) sensitivity in children with idiopathic short stature compared with GH-deficient patients: evidence from an IGF-based dosing study of short children. J. Clin. Endocrinol. Metab. 95, 2089â2098 (2010).
Cohen, P. et al. Dose-sparing and safety-enhancing effects of an IGF-I-based dosing regimen in short children treated with growth hormone in a 2-year randomized controlled trial: therapeutic and pharmacoeconomic considerations. Clin. Endocrinol. 81, 71â76 (2014).
Kaspers, S. R. et al. Implications of a data-driven approach to treatment with growth hormone in children with growth hormone deficiency and Turner syndrome. Appl. Health Econ. Health Policy 11, 237â249 (2013).
Fisher, B. G. & Acerini, C. L. Understanding the growth hormone therapy adherence paradigm: a systematic review. Horm. Res. Paediatr. 79, 189â196 (2013).
Christiansen, J. S. et al. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations. Eur. J. Endocrinol. 174, C1âC8 (2016).
Suga, H. Making pituitary hormone-producing cells in a dish [Review]. Endocr. J. 63, 669â680 (2016).
Miletta, M. C., Petkovic, V., Eble, A., Fluck, C. E. & Mullis, P. E. Rescue of isolated GH deficiency type II (IGHD II) via pharmacologic modulation of GH-1 splicing. Endocrinology 157, 3972â3982 (2016).
Trainer, P. J. et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N. Engl. J. Med. 342, 1171â1177 (2000).
Wilkinson, I. R. et al. A long-acting GH receptor antagonist through fusion to GH binding protein. Sci. Rep. 6, 35072 (2016).
Corpas, E., Harman, S. M. & Blackman, M. R. Human growth hormone and human aging. Endocr. Rev. 14, 20â39 (1993).
Rudman, D. et al. Effect of human growth hormone in men over 60 years old. N. Engl. J. Med. 323, 1â6 (1990).
Bartke, A., Sun, L., Fang, Y. & Hill, C. Growth hormone actions during development influence adult phenotype and longevity. Exp. Gerontol. 86, 22â27 (2016).
Laron, Z., Kauli, R., Lapkina, L. & Werner, H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat. Res. Rev. Mutat. Res. 772, 123â133 (2017).
Suh, Y. et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc. Natl Acad. Sci. USA 105, 3438â3442 (2008).
Smith, P. E. Hypophysectomy and a replacement therapy in the rat. Am. J. Anat. 45, 205â271 (1930).
Laron, Z., Pertzelan, A. & Mannheimer, S. Genetic pituitary dwarfism with high serum concentation of growth hormone â a new inborn error of metabolism? Isr. J. Med. Sci. 2, 152â155 (1966).
Baumann, G., Stolar, M. W., Amburn, K., Barsano, C. P. & DeVries, B. C. A specific growth hormone-binding protein in human plasma: initial characterization. J. Clin. Endocrinol. Metab. 62, 134â141 (1986).
Leung, D. W. et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330, 537â543 (1987).
Laron, Z., Klinger, B., Erser, B. & Asin, S. Effects of acute administration of insulin-like growth factor I in patients with Laron-type dwarfism. Lancet 2, 1170â1172 (1988).
Chen, W. Y., Wight, D. C., Wagner, T. E. & Kopchick, J. J. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc. Natl Acad. Sci. USA 87, 5061â5065 (1990).
Brooks, A. J. & Waters, M. J. The growth hormone receptor: mechanism of activation and clinical implications. Nat. Rev. Endocrinol. 6, 515â525 (2010).
Woods, K. A., Camacho-Hubner, C., Savage, M. O. & Clark, A. J. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N. Engl. J. Med. 335, 1363â1367 (1996).
Ranke, M. B. et al. Derivation and validation of a mathematical model for predicting the response to exogenous recombinant human growth hormone (GH) in prepubertal children with idiopathic GH deficiency. J. Clin. Endocrinol. Metab. 84, 1174â1183 (1999).
Liu, J. L., Yakar, S. & LeRoith, D. Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc. Soc. Exp. Biol. Med. 223, 344â351 (2000).
Abuzzahab, M. J. et al. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N. Engl. J. Med. 349, 2211â2222 (2003).
Kofoed, E. M. et al. Growth hormone insensitivity associated with a STAT5b mutation. N. Engl. J. Med. 349, 1139â1147 (2003).
Domene, H. M. et al. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 350, 570â577 (2004).
Begemann, M. et al. Paternally inherited IGF2 mutation and growth restriction. N. Engl. J. Med. 373, 349â356 (2015).
Kristrom, B., Jansson, C., Rosberg, S. & Albertsson-Wikland, K. Growth response to growth hormone (GH) treatment relates to serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in short children with various GH secretion capacities. J. Clin. Endocrinol. Metab. 82, 2889â2898 (1997).
Wikland, K. A., Kristrom, B., Rosberg, S., Svensson, B. & Nierop, A. F. Validated multivariate models predicting the growth response to GH treatment in individual short children with a broad range in GH secretion capacities. Pediatr. Res. 48, 475â484 (2000).
Schonau, E. et al. A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur. J. Endocrinol. 144, 13â20 (2001).
Acknowledgements
The authors are grateful to L. Van den Brande and J. S. Parks, who inspired them as young scientists.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to this manuscript.
Corresponding author
Ethics declarations
Competing interests
M.B.R. declares that he is a member of the Pfizer advisory board for iGRO and has received honoraria for speaking from Pfizer and Sandoz. J.M.W. declares that he is a member of the Merck advisory board and has received honoraria for speaking from Sandoz, Merck-Serono, Pfizer, Versartis, Eli Lilly, Novo Nordisk and JCR.
Supplementary information
Supplementary Table S1
Genes associated with disorders of the GH-IGF axis (PDF 395 kb)
Supplementary Box S2
Non-GH deficient medical conditions accepted as indications for GH treatment (PDF 305 kb)
Glossary
- Hypothalamoâpituitary portal vessels
-
A system of blood vessels connecting the hypothalamus with the anterior pituitary.
- Isolated GHD
-
(IGHD). Defined by the selective lack of pituitary growth hormone secretion in contrast to normal secretion of other pituitary hormones.
- Agammaglobulinaemia
-
A term for deficiencies of immunoglobulins that electrophoretically migrate into the γ-fraction.
- Laron syndrome
-
A growth disorder due to an insensitivity to growth hormone caused by a mutation in the growth hormone receptor.
- Midparental height
-
(MPH). The average height of the father and mother after converting them to standard deviation scores.
- International reference preparations
-
(IRPs). International standard preparations (for example, for human growth hormone) are established by WHO experts (National Institute for Biological Standards and Control (NIBSC)).
- Turner syndrome
-
A dysmorphic syndrome with short stature caused by the (partial) loss of one X chromosome in females.
- Idiopathic short stature
-
(ISS). Refers to short stature not explained by defined causes.
- Chronic renal insufficiency
-
A term describing a severe form of renal failure that is associated with growth failure in children.
- PraderâWilli syndrome
-
A congenital syndrome associated with severe obesity, mental retardation and short stature (OMIM 301900).
- Noonan syndrome
-
A dysmorphic syndrome associated with phenotypical congenital heart defects and short stature (OMIM 615355).
- Short bowel syndrome
-
The malabsorption disorder caused by the missing of functional small intestine.
- HIV wasting syndrome
-
The severe loss of body mass due to an infection with HIV.
- CreutzfeldtâJakob disease
-
A prion-transmitted degenerative encephalopathy.
Rights and permissions
About this article
Cite this article
Ranke, M., Wit, J. Growth hormone â past, present and future. Nat Rev Endocrinol 14, 285â300 (2018). https://doi.org/10.1038/nrendo.2018.22
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrendo.2018.22
This article is cited by
-
Altered individual-level morphological similarity network in children with growth hormone deficiency
Journal of Neurodevelopmental Disorders (2024)
-
Insights into the ANKRD11 variants and short-stature phenotype through literature review and ClinVar database search
Orphanet Journal of Rare Diseases (2024)
-
Nonlinear relationship between the triglycerideâglucose index and alanine aminotransferase in children with short stature
Scientific Reports (2024)
-
Magnetic resonance imaging of knees: a novel approach to predict recombinant human growth hormone therapy response in short-stature children in late puberty
World Journal of Pediatrics (2024)
-
Lang wirksames Wachstumshormon â eine neue Therapieoption für Kinder mit Wachstumshormonmangel: Status 2024
Monatsschrift Kinderheilkunde (2024)