Abstract
Many organisms are currently polyploid, or have a polyploid ancestry and now have secondarily 'diploidized' genomes. This finding is surprising because retained whole-genome duplications (WGDs) are exceedingly rare, suggesting that polyploidy is usually an evolutionary dead end. We argue that ancient genome doublings could probably have survived only under very specific conditions, but that, whenever established, they might have had a pronounced impact on species diversification, and led to an increase in biological complexity and the origin of evolutionary novelties.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Masterston, J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264, 421â423 (1994).
Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667â1678 (2004).
Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944â1954 (2008).
Cui, L. et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738â749 (2006).
Ramsey, J. & Schemske, D. W. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467â501 (1998).
Otto, S. P. & Whitton, J. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401â437 (2000).
Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60, 561â588 (2009).
Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708â713 (1997).
Aury, J. M. et al. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171â178 (2006).
Wittbrodt, J., Meyer, A. & Schartl, M. More genes in fish? Bioessays 20, 511â515 (1998).
Otto, S. P. The evolutionary consequences of polyploidy. Cell 131, 452â462 (2007).
Comai, L. The advantages and disadvantages of being polyploid. Nature Rev. Genet. 6, 836â846 (2005).
Soltis, D. E. et al. Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336â348 (2009).
Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S. Origin and early evolution of angiosperms. Ann. NY Acad. Sci. 1133, 3â25 (2008).
Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486â488 (2008).
Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463â467 (2007).
Scannell, D. R., Butler, G. & Wolfe, K. H. Yeast genome evolution â the origin of the species. Yeast 24, 929â942 (2007).
Dehal, P. & Boore, J. L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 3, e314 (2005).
Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064â1071 (2008).
Jaillon, O. et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946â957 (2004).
Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27, 937â945 (2005).
Crow, K. D. & Wagner, G. P. What is the role of genome duplication in the evolution of complexity and diversity? Mol. Biol. Evol. 23, 887â892 (2006).
Donoghue, P. C. J. & Purnell, M. A. Genome duplication, extinction and vertebrate evolution. Trends Ecol. Evol. 20, 312â319 (2005).
Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the CretaceousâTertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737â5742 (2009).
Levin, D. A. Polyploidy and novelty in flowering plants. Am. Nat. 122, 1â25 (1983).
Thompson, J. D. & Lumaret, R. The evolutionary dynamics of polyploid plants â origins, establishment and persistence. Trends Ecol. Evol. 7, 302â307 (1992).
Bretagnolle, F. & Thompson, J. D. Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol. 129, 1â22 (1995).
Osborn, T. C. et al. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19, 141â147 (2003).
Rieseberg, L. H. et al. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129, 149â165 (2007).
Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301, 1211â1216 (2003).
Hegarty, M. J. et al. Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos. Trans. R. Soc. Lond. B 363, 3055â3069 (2008).
Ellstrand, N. C. & Schierenbeck, K. A. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl Acad. Sci. USA 97, 7043â7050 (2000).
Pandit, M. K., Tan, H. T. W. & Bisht, M. S. Polyploidy in invasive plant species of Singapore. Bot. J. Linn. Soc. 151, 395â403 (2006).
Soltis, D. E., Soltis, P. S. & Tate, J. A. Advances in the study of polyploidy since plant speciation. New Phytol. 161, 173â191 (2003).
Lokki, J. & Saura, A. Polyploidy in insect evolution. Basic Life Sci. 13, 277â312 (1979).
Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R. & Spears, R. Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10, 2100â2105 (2004).
Parker, J. M., Mikaelian, I., Hahn, N. & Diggs, H. E. Clinical diagnosis and treatment of epidermal chytridiomycosis in African clawed frogs (Xenopus tropicalis). Comp. Med. 52, 265â268 (2002).
Hegarty, M. & Hiscock, S. Polyploidy: doubling up for evolutionary success. Curr. Biol. 17, R927âR929 (2007).
Bicknell, R. A. & Koltunow, A. M. Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16, S228âS245 (2004).
Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100â1111 (2008).
Xiao, S. & Laflamme, M. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol. Evol. 24, 31â40 (2009).
Wille, M., Nagler, T. F., Lehmann, B., Schroder, S. & Kramers, J. D. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature 453, 767â769 (2008).
Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129â2137 (1999).
Hurley, I. A. et al. A new time-scale for ray-finned fish evolution. Proc. R. Soc. B 274, 489â498 (2007).
Werth, C. R. & Windham, M. D. A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am. Nat. 137, 515â526 (1991).
Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459â473 (2000).
Scannell, D. R., Byrne, K. P., Gordon, J. L., Wong, S. & Wolfe, K. H. Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440, 341â345 (2006).
Semon, M. & Wolfe, K. H. Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet. 23, 108â112 (2007).
Bikard, D. et al. Divergent evolution of duplicate genes leads to genetic incompatibilities within A. thaliana. Science 323, 623â626 (2009).
Postlethwait, J., Amores, A., Cresko, W., Singer, A. & Yan, Y. L. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 20, 481â490 (2004).
Volff, J. N. Genome evolution and biodiversity in teleost fish. Heredity 94, 280â294 (2005).
De Bodt, S., Maere, S. & Van de Peer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591â597 (2005).
Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433â438 (2003).
Magallón, S. & Castillo, A. Angiosperm diversification through time. Am. J. Bot. 96, 349â365 (2009).
Vandepoele, K., De Vos, W., Taylor, J. S., Meyer, A. & Van de Peer, Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl Acad. Sci. USA 101, 1638â1643 (2004).
Christoffels, A., Koh, E. G., Brenner, S., Aparicio, S. & Venkatesh, B. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 21, 1146â1151 (2004).
Hoegg, S., Brinkmann, H., Taylor, J. S. & Meyer, A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J. Mol. Evol. 59, 190â203 (2004).
Semon, M. & Wolfe, K. H. Preferential subfunctionalization of slow-evolving genes after allopolyploidization in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 8333â8338 (2008).
Chain, F. J. & Evans, B. J. Multiple mechanisms promote the retained expression of gene duplicates in the tetraploid frog Xenopus laevis. PLoS Genet. 2, e56 (2006).
Chain, F. J., Ilieva, D. & Evans, B. J. Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. BMC Evol. Biol. 8, 43 (2008).
McPeek, M. A. & Brown, J. M. Clade age and not diversification rate explains species richness among animal taxa. Am. Nat. 169, E97âE106 (2007).
Sole, R. V., Fernandez, P. & Kauffman, S. A. Adaptive walks in a gene network model of morphogenesis: insights into the Cambrian explosion. Int. J. Dev. Biol. 47, 685â693 (2003).
Maere, S. et al. Modeling gene and genome duplications in eukaryotes. Proc. Natl Acad. Sci. USA 102, 5454â5459 (2005).
Seoighe, C. & Gehring, C. Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet. 20, 461â464 (2004).
Blanc, G. & Wolfe, K. H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679â1691 (2004).
Blomme, T. et al. The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol. 7, R43 (2006).
Brunet, F. G. et al. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol. Biol. Evol. 23, 1808â1816 (2006).
Seoighe, C. & Wolfe, K. H. Yeast genome evolution in the post-genome era. Curr. Opin. Microbiol. 2, 548â554 (1999).
Davis, J. C. & Petrov, D. A. Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol. 2, E55 (2004).
Papp, B., Pal, C. & Hurst, L. D. Dosage sensitivity and the evolution of gene families in yeast. Nature 424, 194â197 (2003).
Birchler, J. A., Riddle, N. C., Auger, D. L. & Veitia, R. A. Dosage balance in gene regulation: biological implications. Trends Genet. 21, 219â226 (2005).
Freeling, M. & Thomas, B. C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16, 805â814 (2006).
Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433â453 (2009).
Remington, D. L., Vision, T. J., Guilfoyle, T. J. & Reed, J. W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 135, 1738â1752 (2004).
Veron, A. S., Kaufmann, K. & Bornberg-Bauer, E. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol. Biol. Evol. 24, 670â678 (2007).
Zahn, L. M. et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169, 2209â2223 (2005).
Holland, P. W. & Garcia-Fernandez, J. Hox genes and chordate evolution. Dev. Biol. 173, 382â395 (1996).
Holland, P. W. More genes in vertebrates? J. Struct. Funct. Genomics 3, 75â84 (2003).
Huminiecki, L. et al. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol. Biol. 9, 28 (2009).
Hernandez-Sanchez, C., Mansilla, A., de Pablo, F. & Zardoya, R. Evolution of the insulin receptor family and receptor isoform expression in vertebrates. Mol. Biol. Evol. 25, 1043â1053 (2008).
Bertrand, S. et al. Evolutionary genomics of nuclear receptors: from twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 21, 1923â1937 (2004).
Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nature Rev. Genet. 9, 938â950 (2008).
Semon, M. & Wolfe, K. H. Consequences of genome duplication. Curr. Opin. Genet. Dev. 17, 505â512 (2007).
Gould, S. J. & Lewontin, C. R. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. Lond. B 205, 581â598 (1979).
Feild, T. S. & Arens, N. C. The ecophysiology of early angiosperms. Plant Cell Environ. 30, 291â309 (2007).
Garcia-Fernandez, J. Amphioxus: a peaceful anchovy fillet to illuminate chordate evolution (I). Int. J. Biol. Sci. 2, 30â31 (2006).
Schlueter, J. A. et al. Mining EST databases to resolve evolutionary events in major crop species. Genome 47, 868â876 (2004).
Schranz, M. E. & Mitchell-Olds, T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18, 1152â1165 (2006).
Hall, J. C., Iltis, H. H. & Sytsma, K. J. Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst. Bot. 29, 654â669 (2004).
Mondragon-Palomino, M. & Theissen, G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Ann. Bot. (Lond.) 13 Jan 2009 (doi:10.1093/abo/mcn258).
Mondragon-Palomino, M. & Theissen, G. MADS about the evolution of orchid flowers. Trends Plant Sci. 13, 51â59 (2008).
Valentine, J. W. Determinants of diversity in higher taxonomic categories. Paleobiology 6, 444â450 (1980).
Conant, G. C. & Wolfe, K. H. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol. Syst. Biol. 3, 129 (2007).
Hegarty, M. J. & Hiscock, S. J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435âR444 (2008).
Marshall, C. S. Explaining the Cambrian 'explosion' of animals. Annu. Rev. Earth Planet. Sci. 34, 355â384 (2006).
Glover, B. J. Understanding Flowers and Flowering: An Integrated Approach (Oxford Univ. Press, New York, 2007).
Regal, P. J. Ecology and evolution of flowering plant dominance. Science 196, 622â629 (1977).
Theissen, G. & Melzer, R. Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann. Bot. (Lond.) 100, 603â619 (2007).
Hu, S., Dilcher, D. L., Jarzen, D. M. & Winship Taylor, D. Early steps of angiosperm pollinator coevolution. Proc. Natl Acad. Sci. USA 105, 240â245 (2008).
Poinar, G. O. Jr & Danforth, B. N. A fossil bee from Early Cretaceous Burmese amber. Science 314, 614 (2006).
Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26, 47â59 (2009).
Shimeld, S. M. & Holland, P. W. Vertebrate innovations. Proc. Natl Acad. Sci. USA 97, 4449â4452 (2000).
Holland, N. D. & Chen, J. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. Bioessays 23, 142â151 (2001).
Wagner, A. Gene duplications, robustness and evolutionary innovations. Bioessays 30, 367â373 (2008).
Khaner, O. Evolutionary innovations of the vertebrates. Int. Zool. 2, 60â67 (2007).
Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).
Aburomia, R., Khaner, O. & Sidow, A. Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J. Struct. Funct. Genomics 3, 45â52 (2003).
Crepet, W. L. Progress in understanding angiosperm history, success, and relationships: Darwin's abominably 'perplexing phenomenon'. Proc. Natl Acad. Sci. USA 97, 12939â12941 (2000).
Stuessy, T. F. A transitional-combinatorial theory for the origin of angiosperms. Taxon 53, 3â16 (2004).
Carlquist, S. & Schneider, E. L. The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. Am. J. Bot. 89, 185â195 (2002).
Muhammad, A. F. & Sattler, R. Vessel structure of Gnetum and the origin of angiosperms. Am. J. Bot. 69, 1004â1021 (1982).
Valentine, J. W. & Walker, D. Diversity trends within a model of taxonomic hierarchy. Physica D 22, 31â42 (1986).
Niklas, K. J. Computer models of early land plant evolution. Annu. Rev. Earth Planet. Sci. 32, 47â66 (2004).
Niklas, K. J. Morphological evolution through complex domains of fitness. Proc. Natl Acad. Sci. USA 91, 6772â6779 (1994).
Kauffman, S. A. The Origins of Order (Oxford Univ. Press, New York, 1993).
Acknowledgements
Y.V.d.P. acknowledges support from the IUAP P6/25 (BioMaGNet). A.M. thanks the Deutsche Forschungsgemeinschaft, University of Konstanz and the Institute for Advanced Study Berlin for support. S.M. is a fellow of the Fund for Scientific Research â Flanders (FWO). We thank two anonymous reviewers for valuable comments and suggestions and apologize to those whose work could not be cited because of space limitations.
Author information
Authors and Affiliations
Corresponding author
Related links
Glossary
- Accession
-
A sample of a plant variety collected at a specific location and time. This term is used to describe the Arabidopsis thaliana laboratory lines collected initially from the wild.
- Allopolyploidy
-
The generation of the polyploid state by the fusion of nuclei from different species. For example, two fertilized diploid oocytes can fuse such that the newly formed single egg has two complete sets of chromosomes.
- Autopolyploidy
-
In contrast to allopolyploidy, different sets of chromosomes are derived from the same species. This can occur in the fertilized oocyte if the nucleus divides but the cell does not.
- BatesonâDobzhanskyâMuller model
-
Describes incompatibilities between organisms on the basis of the synergistic interaction of genes that have functionally diverged among the respective parents. Such incompatibilities can lead to speciation.
- Carpel
-
A leaf-like structure that encloses the ovules and seeds and is the defining characteristic of flowering plants. In some species, multiple carpels might be present in a compound structure called an ovary.
- Dosage balance effects
-
The components of macromolecular complexes must be balanced to avoid dominant fitness defects. Therefore, both under- and overexpression of individual protein subunits within a complex â for example, through duplication â tend to lower fitness.
- Haploinsufficient
-
Describes the situation in which a lower than normal amount of a wild-type gene product confers a detectable phenotype.
- Heterosis
-
The greater fitness of a hybrid individual carrying different alleles of genes relative to either of the two corresponding homozygous parents. Also called hybrid vigour. A more precise definition is non-additive inheritance, in which a trait in the first filial generation transgresses both parental values.
- KâT boundary
-
The KâT event â which occurred â¼65 million years ago at the end of the Cretaceous period and the beginning of the Tertiary â is the most recent large-scale mass extinction of animal and plant species. There is general consensus that the KâT extinction was caused by one or more catastrophic events, such as a massive asteroid impact and increased volcanic activity.
- Mutational robustness
-
Describes the extent to which the phenotype of an organism remains constant in spite of mutations. If an organism has an extra copy of a gene through gene or genome duplication, the effect of the loss of one copy might be limited.
- Neural crest
-
A migratory cell population that gives rise to numerous differentiated cell types in vertebrates.
- Orthologues
-
Loci in two species that are derived from a common ancestral locus by a speciation event.
- Paralogues
-
Genes in the same organism that have evolved from a gene duplication, usually with a subsequent, sometimes subtle, divergence of function.
- Phenotype space
-
A multi-dimensional continuum of all possible phenotypes.
- Pleiotropic gene
-
A gene that is responsible for several distinct and seemingly unrelated phenotypic effects.
- Transgressive segregation
-
Refers to the formation of extreme phenotypes that are observed in segregating hybrid populations when compared with parental lines.
Rights and permissions
About this article
Cite this article
Van de Peer, Y., Maere, S. & Meyer, A. The evolutionary significance of ancient genome duplications. Nat Rev Genet 10, 725â732 (2009). https://doi.org/10.1038/nrg2600
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrg2600
This article is cited by
-
Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals
BMC Genomics (2024)
-
Comprehensive genomic exploration of class III peroxidase genes in guava unravels physiology, evolution, and postharvest storage responses
Scientific Reports (2024)
-
Cartilage diversification and modularity drove the evolution of the ancestral vertebrate head skeleton
EvoDevo (2023)
-
Functional and evolutionary study of MLO gene family in the regulation of Sclerotinia stem rot resistance in Brassica napus L.
Biotechnology for Biofuels and Bioproducts (2023)
-
Dosage balance acts as a time-dependent selective barrier to subfunctionalization
BMC Ecology and Evolution (2023)