Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Segmental duplications and the evolution of the primate genome

Abstract

Initial human genome sequence analysis has revealed large segments of nearly identical sequence in particular chromosomal regions. The recent origin of these segments and their abundance (∼5%) has challenged investigators to elucidate their underlying mechanism and role in primate genome evolution. Although the precise fraction is unknown, some of these duplicated segments have recently been shown to be associated with rapid gene innovation and chromosomal rearrangement in the genomes of man and the great apes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of segmental duplication.
Figure 2: Primate phylogeny.
Figure 3: Sequence similarity among human segmental duplications.
Figure 4: Duplication-driven chromosomal rearrangements.
Figure 5: Positive selection for the morpheus gene family among primates.

Similar content being viewed by others

References

  1. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  2. White, T. D. J. Modes of Speciation (W. H. Freeman, San Francisco, California, 1973).

    Google Scholar 

  3. O'Brien, S. J. & Stanyon, R. Phylogenomics. Ancestral primate viewed. Nature 402, 365–366 (1999).

    Article  CAS  Google Scholar 

  4. Lundin, L. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19 (1993).

    Article  CAS  Google Scholar 

  5. The International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  6. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  7. Cheung, V. G. et al. Integration of cytogenetic landmarks into the draft sequence of the human genome. The BAC Resource Consortium. Nature 409, 953–958 (2001).

    Article  CAS  Google Scholar 

  8. Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    Article  CAS  Google Scholar 

  9. Eichler, E. E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 17, 661–669 (2001).

    Article  CAS  Google Scholar 

  10. Eichler, E. E. et al. Duplication of a gene-rich cluster between 16p11.1 and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Hum. Mol. Genet. 5, 899–912 (1996).

    Article  CAS  Google Scholar 

  11. Horvath, J., Schwartz, S. & Eichler, E. The mosaic structure of a 2p11 pericentromeric segment: a strategy for characterizing complex regions of the human genome. Genome Res. 10, 839–852 (2000).

    Article  CAS  Google Scholar 

  12. Tilford, C. A. et al. A physical map of the human Y chromosome. Nature 409, 943–945 (2001).

    Article  CAS  Google Scholar 

  13. Dombroski, B. A., Mathias, S. L., Nanthakumar, E., Scott, A. F. & Kazazian, H. H. Jr. Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  Google Scholar 

  14. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999).

    Article  CAS  Google Scholar 

  15. Hattori, M. et al. The DNA sequence of human chromosome 21. The chromosome 21 mapping and sequencing consortium. Nature 405, 311–319 (2000).

    Article  CAS  Google Scholar 

  16. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  17. Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999).

    Article  CAS  Google Scholar 

  18. Eichler, E., Archidiacono, N. & Rocchi, M. CAGGG repeats and the pericentromeric duplication of the hominoid genome. Genome Res. 9, 1048–1058 (1999).

    Article  CAS  Google Scholar 

  19. Guy, J. et al. Genomic sequence and transcriptional profile of the boundary between pericentromeric satellites and genes on human chromosome arm 10q. Hum. Mol. Genet. 9, 2029–2042 (2000).

    Article  CAS  Google Scholar 

  20. Davis, M., Kim, S. & Hood, L. DNA sequences mediating class switching in α-immunoglobulins. Science 209, 1360–1365 (1980).

    Article  CAS  Google Scholar 

  21. Sen, D. & Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications in meiosis. Nature 334, 364–366 (1988).

    Article  CAS  Google Scholar 

  22. Horvath, J. et al. Molecular structure and evolution of an α/non-α satellite junction at 16p11. Hum. Mol. Genet. 9, 113–123 (2000).

    Article  CAS  Google Scholar 

  23. Jackson, M. S. et al. Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications, and unstable sequences with homologies to telomeric and other centromeric locations. Hum. Mol. Genet. 8, 205–215 (1999).

    Article  CAS  Google Scholar 

  24. Bailey, J. A. et al. Human specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 70 (in the press).

  25. Keller, M. P., Seifried, B. A. & Chance, P. F. Molecular evolution of the CMT1A-REP region: a human- and chimpanzee-specific repeat. Mol. Biol. Evol. 16, 1019–1026 (1999).

    Article  CAS  Google Scholar 

  26. Courseaux, A. & Nahon, J. L. Birth of two chimeric genes in the Hominidae lineage. Science 291, 1293–1297 (2001).

    Article  CAS  Google Scholar 

  27. Lupski, J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998).

    Article  CAS  Google Scholar 

  28. Emanuel, B. S. & Shaikh, T. H. Segmental duplications: an 'expanding' role in genomic instability and disease. Nature Rev. Genet. 2, 791–800 (2001).

    Article  CAS  Google Scholar 

  29. Osborne, L. R. et al. A 1.5 million-base pair inversion polymorphism in families with Williams–Beuren syndrome. Nature Genet. 29, 321–325 (2001).

    Article  CAS  Google Scholar 

  30. Kuroda-Kawaguchi, T. et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nature Genet. 29, 279–286 (2001).

    Article  CAS  Google Scholar 

  31. Yunis, J. J. & Prakash, O. The origin of man: a chromosomal pictorial legacy. Science 215, 1525–1530 (1982).

    Article  CAS  Google Scholar 

  32. Turleau, C., De Grouchy, J. & Klein, M. Chromosomal phylogeny of man and the anthropomorphic primates (Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Attempt at reconstitution of the karyotype of the common ancestor. Ann. Genet. 15, 225–240 (1972).

    CAS  PubMed  Google Scholar 

  33. Dutrillaux, B. Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum. Genet. 48, 251–314 (1979).

    Article  CAS  Google Scholar 

  34. Nickerson, E. & Nelson, D. L. Molecular definition of pericentric inversion breakpoints occurring during the evolution of humans and chimpanzees. Genomics 50, 368–372 (1998).

    Article  CAS  Google Scholar 

  35. Valero, M. C., De Luis, O., Cruces, J. & Perez Jurado, L. A. Fine-scale comparative mapping of the human 7q11.23 region and the orthologous region on mouse chromosome 5G: the low-copy repeats that flank the Williams–Beuren syndrome deletion arose at breakpoint sites of an evolutionary inversion(s). Genomics 69, 1–13 (2000).

    Article  CAS  Google Scholar 

  36. Dehal, P. et al. Human chromosome 19 and related regions in mouse: conservative and lineage specific evolution. Science 293, 104–111 (2001).

    Article  CAS  Google Scholar 

  37. Stankiewicz, P., Park, S. S., Inoue, K. & Lupski, J. R. The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. Genome Res. 11, 1205–1210 (2001).

    Article  CAS  Google Scholar 

  38. Tunnacliffe, A. et al. Duplicated KOX zinc finger gene clusters flank the centromere of human chromosome 10: evidence for a pericentric inversion during primate evolution. Nucleic Acids Res. 21, 1409–1417 (1993).

    Article  CAS  Google Scholar 

  39. Maresco, D. L., Chang, E., Theil, K. S., Francke, U. & Anderson, C. L. The three genes of the human FCGR1 gene family encoding FcγRI flank the centromere of chromosome 1 at 1p12 and 1q21. Cytogenet. Cell Genet. 73, 157–163 (1996).

    Article  CAS  Google Scholar 

  40. Lynch, M. & Conery, J. S. The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  Google Scholar 

  41. Iyer, G. et al. Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28. Genomics 34, 143–146 (1996).

    Article  CAS  Google Scholar 

  42. Walsh, J. B. How often do duplicated genes evolve new functions? Genetics 139, 421–428 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Patthy, L. Genome evolution and the evolution of exon-shuffling — a review. Gene 238, 103–114 (1999).

    Article  CAS  Google Scholar 

  44. Nei, M., Zhang, J. & Yokoyama, S. Color vision of ancestral organisms of higher primates. Mol. Biol. Evol. 14, 611–618 (1997).

    Article  CAS  Google Scholar 

  45. Yokoyama, S., Starmer, W. T. & Yokoyama, R. Paralogous origin of the red- and green-sensitive visual pigment genes in vertebrates. Mol. Biol. Evol. 10, 527–538 (1993).

    CAS  PubMed  Google Scholar 

  46. Rosenberg, H. F. & Dyer, K. D. Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J. Biol. Chem. 270, 21539–21544 (1995).

    Article  CAS  Google Scholar 

  47. O'Neill, R. J., O'Neill, M. J. & Graves, J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 (1998).

    Article  CAS  Google Scholar 

  48. Petrov, D. A., Schutzman, J. L., Hartl, D. L. & Lozovskaya, E. R. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl Acad. Sci. USA 92, 8050–8054 (1995).

    Article  CAS  Google Scholar 

  49. Archidiacono, N. et al. Evolution of chromosome Y in primates. Chromosoma 107, 241–246 (1998).

    Article  CAS  Google Scholar 

  50. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    Article  CAS  Google Scholar 

  51. Zhang, J., Rosenberg, H. F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl Acad. Sci. USA 95, 3708–3713 (1998).

    Article  CAS  Google Scholar 

  52. Duda, T. F. & Palumbi, S. R. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc. Natl Acad. Sci. USA 96, 6820–6823 (1999).

    Article  CAS  Google Scholar 

  53. Civetta, A. & Singh, R. S. Sex-related genes, directional sexual selection, and speciation. Mol. Biol. Evol. 15, 901–909 (1998).

    Article  CAS  Google Scholar 

  54. Hutter, H. et al. Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287, 989–994 (2000).

    Article  CAS  Google Scholar 

  55. McClelland, M. et al. Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three Salmonella enterica serovars, typhimurium, typhi and paratyphi. Nucleic Acids Res. 28, 4974–4986 (2000).

    Article  CAS  Google Scholar 

  56. King, M. & Wilson, A. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  Google Scholar 

  57. Wilson, A. C., Bush, G. L., Case, S. M. & King, M. C. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl Acad. Sci. USA 72, 5061–5065 (1975).

    Article  CAS  Google Scholar 

  58. McConkey, E. H. & Varki, A. A primate genome project deserves high priority. Science 289, 1295–1296 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health, the Department of Energy and the Charles B. Wang Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan E. Eichler.

Related links

Related links

DATABASES

LocusLink 

ABCD1

CMT1A

ECP

NPIP

SLC6A8 

OMIM 

Charcot–Marie–Tooth neuropathy type 1A

Williams–Beuren syndrome 

UniGene 

Hs.135840

LINKS

AF132984

Glossary

DOMAIN ACCRETION

The evolution of larger multidomain proteins by the addition of DNA segments that encode distinct structural domains.

G4 DNA

G-quartet or quadruplex DNA structure formed in vitro by DNA oligonucleotides with repeats that contain three or more consecutive guanines. In the mammalian genome, such regions (for example, telomeres, rDNA and immunoglobulin heavy-chain segments) have specialized recombination properties.

HOMINOID

A primate superfamily that includes the great ape species and humans (hominids).

L1 ELEMENT

A family of long, interspersed repeat elements (LINE1) that is still actively retrotransposing in the mammalian genome.

NEGATIVE SELECTION

A process in which the effective rate of synonymous change exceeds that of amino-acid replacement between homologous genes. It can occur when most non-synonymous changes in the gene are selectively deleterious and decrease the fitness of the species.

PARACENTRIC INVERSION

A structural chromosome alteration that results from breakage, inversion and reinsertion of a fragment of a chromosomal arm.

PERICENTRIC INVERSION

A structural chromosome alteration that results from breakage, inversion and reinsertion of a fragment that spans the centromere.

POSITIVE SELECTION

A process in which the effective rate of amino-acid replacement exceeds that of synonymous change between homologous genes. It can occur when non-synonymous changes in the gene are selectively advantageous and increase the fitness of the species.

PROGENITOR LOCUS

Ancestral locus from which the first segmental duplication is generated.

STASIPATRIC SPECIATION

Emergence of a new species as a consequence of chromosomal rearrangement and genetic isolation due to reduced fecundity and/or fertility of the hybrid species.

STRUCTURAL POLYMORPHISM

A large (usually greater than a few kilobases) chromosomal rearrangement (deletion, duplication or inversion) that is inherited and is polymorphic in a species. If such polymorphisms are cytogenetically visible, they are termed 'heteromorphisms'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samonte, R., Eichler, E. Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3, 65–72 (2002). https://doi.org/10.1038/nrg705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg705

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing