Abstract
Colonic gases are among the most tangible features of digestion, yet physicians are typically unable to offer long-term relief from clinical complaints of excessive gas. Studies characterizing colonic gases have linked changes in volume or composition with bowel disorders and shown hydrogen gas (H2), methane, hydrogen sulphide, and carbon dioxide to be by-products of the interplay between H2-producing fermentative bacteria and H2 consumers (reductive acetogens, methanogenic archaea and sulphate-reducing bacteria [SRB]). Clinically, H2 and methane measured in breath can indicate lactose and glucose intolerance, small intestinal bacterial overgrowth and IBS. Methane levels are increased in patients with constipation or IBS. Hydrogen sulphide is a by-product of H2 metabolism by SRB, which are ubiquitous in the colonic mucosa. Although higher hydrogen sulphide and SRB levels have been detected in patients with IBD, and to a lesser extent in colorectal cancer, this colonic gas might have beneficial effects. Moreover, H2 has been shown to have antioxidant properties and, in the healthy colon, physiological H2 concentrations might protect the mucosa from oxidative insults, whereas an impaired H2 economy might facilitate inflammation or carcinogenesis. Therefore, standardized breath gas measurements combined with ever-improving molecular methodologies could provide novel strategies to prevent, diagnose or manage numerous colonic disorders.
Key Points
-
The colonic gases hydrogen (H2), carbon dioxide and methane (CH4) are end products of microbial fermentation; their concentrations depend on the interplay between host physiology and H2-producing (hydrogenogenic) and H2-using (hydrogenotrophic) microbes
-
Colonic H2 production is most readily measured via excretion in breath; clinically, breath H2 and CH4 are commonly measured to assess lactose and glucose intolerance and small intestinal bacterial overgrowth, and increasingly IBS
-
Improved understanding of microbial H2 metabolism and its relation to expired gas concentrations will reinforce the breath gas test as a widely applicable, easy and cost-effective diagnostic or prognostic tool
-
Use of breath gas tests in diagnosis could enable novel therapeutic or preventative measures for a wide array of colonic diseases
-
Although emphasis has been given to the potential inflammatory or carcinogenic properties of colonic gases, emerging evidence suggests these gases might have a beneficial effect in colonic health
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Suarez, F., Furne, J., Springfield, J. & Levitt, M. Insights into human colonic physiology obtained from the study of flatus composition. Am. J. Physiol. 272, G1028âG1033 (1997).
Suarez, F., Furne, J., Springfield, J. & Levitt, M. Production and elimination of sulfur-containing gases in the rat colon. Am. J. Physiol. 274, G727âG733 (1998).
Levitt, M. D. & Bond, J. H. Jr. Volume, composition, and source of intestinal gas. Gastroenterology 59, 921â929 (1970).
Christl, S. U., Murgatroyd, P. R., Gibson, G. R. & Cummings, J. H. Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102, 1269â1277 (1992).
Kirk, E. The quantity and composition of human colonic flatus. Gastroenterology 12, 782â794 (1949).
Steggerda, F. R. Gastrointestinal gas following food consumption. Ann. NY Acad. Sci. 150, 57â66 (1968).
Tomlin, J., Lowis, C. & Read, N. W. Investigation of normal flatus production in healthy volunteers. Gut 32, 665â669 (1991).
Beazell, J. M. & Ivey, A. C. The quantity of colonic flatus excreted by the ânormalâ individual. Am. J. Dig. Dis. 8, 128â129 (1941).
Askevold, F. Investigations on the influence of diet on the quantity and composition of intestinal gas in humans. Scand. J. Clin. Lab. Invest. 8, 87â94 (1956).
Ruge, E. Beitrag sur kennuness der darmgase [German]. Sitsber. Kaiserlicken Akad. 44, 739 (1861).
Levitt, M. D., Gibson, G. R. & Christl, S. U. in Human Colonic Bacteria: Role in Nutrition, Physiology, and Pathology (eds Gibson, G. R. & Macfarlane, G. T.) 131â154 (CRC Press, Boca Raton, 1975).
Steggerda, F. R. & Dimmick, J. F. Effects of bean diets on concentration of carbon dioxide in flatus. Am. J. Clin. Nutr. 19, 120â124 (1966).
Levitt, M. D. & Ingelfinger, F. J. Hydrogen and methane production in man. Ann. NY Acad. Sci. 150, 75â81 (1968).
Levitt, M. D., Hirsh, P., Fetzer, C. A., Sheahan, M. & Levine, A. S. H2 excretion after ingestion of complex carbohydrates. Gastroenterology 92, 383â389 (1987).
Wolin, M. J. & Miller, T. L. in Human Intestinal Microflora in Health and Disease (ed. Hentges, D. J.) 147â165 (Academic Press, New York, 1983).
Strocchi, A. & Levitt, M. D. Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis. J. Clin. Invest. 89, 1304â1311 (1992).
Hammer, H. F. Colonic hydrogen absorption: quantification of its effect on hydrogen accumulation caused by bacterial fermentation of carbohydrates. Gut 34, 818â822 (1993).
Le Marchand, L., Wilkens, L. R., Harwood, P. & Cooney, R. V. Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies: circadian patterns of excretion. Environ. Health Perspect. 98, 199â202 (1992).
Strocchi, A., Ellis, C. & Levitt, M. D. Reproducibility of measurements of trace gas concentrations in expired air. Gastroenterology 101, 175â179 (1991).
Calloway, D. H. Respiratory hydrogen and methane as affected by consumption of gas-forming foods. Gastroenterology 51, 383â389 (1966).
Calloway, D. H. & Murphy, E. L. The use of expired air to measure intestinal gas formation. Ann. NY Acad. Sci. 150, 82â95 (1968).
Bjorneklett, A. & Jenssen, E. Relationships between hydrogen (H2) and methane (CH4) production in man. Scand. J. Gastroenterol. 17, 985â992 (1982).
Cloarec, D. et al. Breath hydrogen response to lactulose in healthy subjects: relationship to methane producing status. Gut 31, 300â304 (1990).
Vernia, P., Camillo, M. D., Marinaro, V. & Caprilli, R. Effect of predominant methanogenic flora on the outcome of lactose breath test in irritable bowel syndrome patients. Eur. J. Clin. Nutr. 57, 1116â1119 (2003).
Calloway, D. H., Murphy, E. L. & Bauer, D. Determination of lactose intolerance by breath analysis. Am. J. Dig. Dis. 14, 811â815 (1969).
Levitt, M. D. & Donaldson, R. M. Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J. Lab. Clin. Med. 75, 937â945 (1970).
Metz, G., Jenkins, D. J., Peters, T. J., Newman, A. & Blendis, L. M. Breath hydrogen as a diagnostic method for hypolactasia. Lancet 1, 1155â1157 (1975).
Rhodes, J. M., Middleton, P. & Jewell, D. P. The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand. J. Gastroenterol. 14, 333â336 (1979).
Khoshini, R., Dai, S. C., Lezcano, S. & Pimentel, M. A systematic review of diagnostic tests for small intestinal bacterial overgrowth. Dig. Dis. Sci. 53, 1443â1454 (2008).
Bures, J. et al. Small intestinal bacterial overgrowth syndrome. World J. Gastroenterol. 16, 2978â2990 (2010).
Caride, V. J. et al. Scintigraphic determination of small intestinal transit time: comparison with the hydrogen breath technique. Gastroenterology 86, 714â720 (1984).
Bond, J. H., Engel, R. R. & Levitt, M. D. Factors influencing pulmonary methane excretion in manâindirect method of studying in situ metabolism of methane-producing colonic bacteria. J. Exp. Med. 133, 572â588 (1971).
Levitt, M. D., Furne, J. K., Kuskowski, M. & Ruddy, J. Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements. Clin. Gastroenterol. Hepatol. 4, 123â129 (2006).
Gibson, G. R., Macfarlane, G. T. & Cummings, J. H. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J. Appl. Bacteriol. 65, 103â111 (1988).
Segal, I., Walker, A. R., Lord, S. & Cummings, J. H. Breath methane and large bowel cancer risk in contrasting African populations. Gut 29, 608â613 (1988).
Wilkens, L. R., Le Marchand, L., Harwood, P. & Cooney, R. V. Use of breath hydrogen and methane as markers of colonic fermentation in epidemiological studies: variability in excretion. Cancer Epidemiol. Biomarkers Prev. 3, 149â153 (1994).
O'Keefe, S. J. et al. Why do African Americans get more colon cancer than Native Africans? J. Nutr. 137, 175Sâ182S (2007).
Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100â180 (1977).
Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E. & Gaskins, H. R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 6, 57â70 (2011).
Fite, A. et al. Identification and quantitation of mucosal and faecal desulfovibrios using real time polymerase chain reaction. Gut 53, 523â529 (2004).
Zinkevich, V. V. & Beech, I. B. Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiol. Ecol. 34, 147â155 (2000).
Chassard, C. et al. Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol. Ecol. 66, 496â504 (2008).
Harding, G. K., Sutter, V. L., Finegold, S. M. & Bricknell, K. S. Characterization of Bacteroides melaninogenicus. J. Clin. Microbiol. 4, 354â359 (1976).
Simmering, R. et al. Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst. Appl. Microbiol. 25, 189â193 (2002).
Miller, T. L. & Wolin, M. J. Formation of hydrogen and formate by Ruminococcus albus. J. Bacteriol. 116, 836â846 (1973).
Schwiertz, A. et al. Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst. Appl. Microbiol. 25, 46â51 (2002).
Steer, T., Collins, M. D., Gibson, G. R., Hippe, H. & Lawson, P. A. Clostridium hathewayi sp. nov., from human faeces. Syst. Appl. Microbiol. 24, 353â357 (2001).
Kamlage, B., Gruhl, B. & Blaut, M. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides. Appl. Environ. Microbiol. 63, 1732â1738 (1997).
Pochart, P., Dore, J., Lemann, F., Goderel, I. & Rambaud, J. C. Interrelations between populations of methanogenic archaea and sulfate-reducing bacteria in the human colon. FEMS Microbiol. Lett. 77, 225â228 (1992).
Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacteriol. 72, 57â64 (1992).
Pochart, P. et al. Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology 105, 1281â1285 (1993).
Flourie, B. et al. Site and substrates for methane production in human colon. Am. J. Physiol. 260, G752âG757 (1991).
Gibson, G. R. et al. Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut 31, 679â683 (1990).
Marteau, P. et al. Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67, 4939â4942 (2001).
Macfarlane, G. T. & Gibson, G. R. in Gastrointestinal Microbiology (eds Mackie, R. I. & White, B. A.) 269â318 (Chapman and Hall, New York, 1997).
Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. Roseburia intestinalis sp nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Sys. Evol. Microbiol. 52, 1615â1620 (2002).
Duncan, S. H. et al. Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int. J. Syst. Evol. Microbiol. 56, 2437â2441 (2006).
Duncan, S. H. & Flint, H. J. Proposal of a neotype strain (A1â86) for Eubacterium rectale. Request for an opinion. Int. J. Syst. Evol. Microbiol. 58, 1735â1736 (2008).
Chassard, C., Delmas, E., Lawson, P. A. & Bernalier-Donadille, A. Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int. J. Syst. Evol. Microbiol. 58, 1008â1013 (2008).
Zoetendal, E. G., Plugge, C. M., Akkermans, A. D. & de Vos, W. M. Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int. J. Syst. Evol. Microbiol. 53, 211â215 (2003).
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469â1476 (2004).
Duncan, S. H., Hold, G. L., Harmsen, H. J., Stewart, C. S. & Flint, H. J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 52, 2141â2146 (2002).
Tolvanen, K. E., Mangayil, R. K., Karp, M. T. & Santala, V. P. Simple enrichment system for hydrogen producers. Appl. Environ. Microbiol. 77, 4246â4248 (2011).
Cammack, R. Hydrogenase sophistication. Nature 397, 214â215 (1999).
Schmidt, O., Drake, H. L. & Horn, M. A. Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen. Appl. Environ. Microbiol. 76, 2027â2031 (2010).
Schmidt, O. et al. Novel [NiFe]- and [FeFe]-hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents. Appl. Environ. Microbiol. 77, 5842â5850 (2011).
Drake, H. L., Gossner, A. S. & Daniel, S. L. Old acetogens, new light. Ann. NY Acad. Sci. 1125, 100â128 (2008).
Lajoie, S. F., Bank, S., Miller, T. L. & Wolin, M. J. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54, 2723â2727 (1988).
Bernalier, A. et al. Acetogenesis from H2 and CO2 by methane- and non-methane-producing human colonic bacterial communities. FEMS Microbiol. Ecol. 19, 193â202 (1996).
Dore, J. et al. Enumeration of H2-utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiol. Ecol. 17, 279â284 (1995).
Bernalier, A., Rochet, V., Leclerc, M., Dore, J. & Pochart, P. Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr. Microbiol. 33, 94â99 (1996).
Bernalier, A., Willems, A., Leclerc, M., Rochet, V. & Collins, M. D. Ruminococcus hydrogenotrophicus sp. nov., a new H2/CO2-utilizing acetogenic bacterium isolated from human feces. Arch. Microbiol. 166, 176â183 (1996).
Lovell, C. R. & Leaphart, A. B. Community-level analysis: key genes of CO2-reductive acetogenesis. Methods Enzymol. 397, 454â469 (2005).
Wolin, M. J. & Miller, T. L. Bacterial strains from human feces that reduce CO2 to acetic acid. Appl. Environ. Microbiol. 59, 3551â3556 (1993).
Ohashi, Y., Igarashi, T., Kumazawa, F. & Fujisawa, T. Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci. Microflora 26, 37â40 (2007).
Cord-Ruwisch, R., Seitz, H. & Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149, 350â357 (1988).
Rey, F. E. et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285, 22082â22090 (2010).
Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62, 1589â1592 (1996).
Hedderich, R. & Whitman, W. B. in The Prokaryotes (ed. Dworkin, M.) 1050â1079 (Springer, New York, 2006).
Miller, T. L. & Wolin, M. J. Methanogens in human and animal intestinal tracts. Syst. Appl. Microbiol. 7, 223â229 (1986).
Chassard, C., Delmas, E., Robert, C. & Bernalier-Donadille, A. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol. Ecol. 74, 205â213 (2010).
Hansen, E. E. et al. Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc. Natl Acad. Sci. USA 108, 4599â4606 (2011).
Miller, T. L. & Wolin, M. J. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141, 116â122 (1985).
Fricke, W. F. et al. The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J. Bacteriol. 188, 642â658 (2006).
Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635â1638 (2005).
Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci USA 106, 2365â2370 (2009).
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27, 698â704 (1986).
Miller, T. L. & Wolin, M. J. Enumeration of Methanobrevibacter smithii from human feces. Arch. Microbiol. 45, 317 (1982).
Abell, G. C. J., Conlon, M. A. & McOrist, A. L. Methanogenic archaea in adult human faecal samples are inversely related to butyrate concentration. Microb. Ecol. Health Dis. 18, 154â160 (2006).
Scanlan, P. D., Shanahan, F. & Marchesi, J. R. Human methanogen diversity and incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 8, 79 (2008).
Mihajlovski, A., Alric, M. & Brugere, J. F. A putative new order of methanogenic Archaea inhabiting the human gut, as revealed by molecular analyses of the mcrA gene. Res. Microbiol. 159, 516â521 (2008).
Marquet, P., Duncan, S. H., Chassard, C., Bernalier-Donadille, A. & Flint, H. J. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol. Lett. 299, 128â134 (2009).
Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37, 1034â1041 (2002).
Gibson, G. R., Macfarlane, S. & Macfarlane, G. T. Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiol. Ecol. 12, 117â125 (1993).
Newton, D. F., Cummings, J. H., Macfarlane, S. & Macfarlane, G. T. Growth of a human intestinal Desulfovibrio desulfuricans in continuous cultures containing defined populations of saccharolytic and amino acid fermenting bacteria. J. Appl. Microbiol. 85, 372â380 (1998).
Hopkins, M. J., Macfarlane, G. T., Furrie, E., Fite, A. & Macfarlane, S. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol. Ecol. 54, 77â85 (2005).
Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Lett. 86, 103â111 (1991).
Willis, C. L., Cummings, J. H., Neale, G. & Gibson, G. R. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Curr. Microbiol. 35, 294â298 (1997).
Zverlov, V. et al. Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J. Bacteriol. 187, 2203â2208 (2005).
Klein, M. et al. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183, 6028â6035 (2001).
Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975â2982 (1998).
Meyer, B. & Kuever, J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5â²-phosphosulfate (APS) reductase from sulfate-reducing prokaryotesâorigin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153, 2026â2044 (2007).
Hungin, A. P., Chang, L., Locke, G. R., Dennis, E. H. & Barghout, V. Irritable bowel syndrome in the United States: prevalence, symptom patterns and impact. Aliment. Pharmacol. Ther. 21, 1365â1375 (2005).
Everhart, J. E. in The Burden of Digestive Diseases in the United States (ed. Everhart, J. E.) 77â87 (US Government Printing Office. US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Washington, DC, 2008).
Drossman, D. A. et al. A prospective assessment of bowel habit in irritable bowel syndrome in women: defining an alternator. Gastroenterology 128, 580â589 (2005).
Drossman, D. A. et al. International survey of patients with IBS: symptom features and their severity, health status, treatments, and risk taking to achieve clinical benefit. J. Clin. Gastroenterol. 43, 541â550 (2009).
Hasler, W. L. Irritable bowel syndrome and bloating. Best Pract. Res. Clin. Gastroenterol. 21, 689â707 (2007).
Serra, J., Azpiroz, F. & Malagelada, J. R. Impaired transit and tolerance of intestinal gas in the irritable bowel syndrome. Gut 48, 14â19 (2001).
Salonen, A., de Vos, W. M. & Palva, A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156, 3205â3215 (2010).
Kunkel, D. et al. Methane on breath testing is associated with constipation: a systematic review and meta-analysis. Dig. Dis. Sci. 56, 1612â1618 (2011).
Spiegel, B. M. R. Questioning the bacterial overgrowth hypothesis of irritable bowel syndrome: An epidemiologic and evolutionary perspective. Clin. Gastroenterol. Hepatol. 9, 461â469 (2011).
Chatterjee, S., Park, S., Low, K., Kong, Y. & Pimentel, M. The degree of breath methane production in IBS correlates with the severity of constipation. Am. J. Gastroenterol. 102, 837â841 (2007).
King, T. S., Elia, M. & Hunter, J. O. Abnormal colonic fermentation in irritable bowel syndrome. Lancet 352, 1187â1189 (1998).
Simren, M. & Stotzer, P. O. Use and abuse of hydrogen breath tests. Gut 55, 297â303 (2006).
Pimentel, M., Chow, E. J. & Lin, H. C. Comparison of peak breath hydrogen production in patients with irritable bowel syndrome, chronic fatigue syndrome and fibromyalgia. Gastroenterology 118, A413âA413 (2000).
Pimentel, M., Chow, E. J. & Lin, H. C. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am. J. Gastroenterol. 95, 3503â3506 (2000).
Yu, D., Cheeseman, F. & Vanner, S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut 60, 334â340 (2011).
Quigley, E. M. Germs, gas and the gut; the evolving role of the enteric flora in IBS. Am. J. Gastroenterol. 101, 334â335 (2006).
Quigley, E. M. M. The enteric microbiota in the pathogenesis and management of constipation. Best Pract. Res. Clin. Gastroenterol. 25, 119â126 (2011).
Pimentel, M., Park, S., Kong, Y., Low, K. & Chatterjee, S. Methane gas is associated with constipation predominant symptoms in IBS: Results from a double-blind controlled study. Gastroenterology 130, A514 (2006).
Pimentel, M. et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1089âG1095 (2006).
Rajilic-Stojanovic, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792â1801 (2011).
Quigley, E. M. & Quera, R. Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probiotics. Gastroenterology 130, S78âS90 (2006).
Evans, B. W., Clark, W. K., Moore, D. J. & Whorwell, P. J. Tegaserod for the treatment of irritable bowel syndrome and chronic constipation. Cochrane Database Syst. Rev. Issue 4. Art. No.: CD003960 (2007).
Kim, D. Y. & Camilleri, M. Serotonin: a mediator of the brain-gut connection. Am. J. Gastroenterol. 95, 2698â2709 (2000).
De Ponti, F. & Tonini, M. Irritable bowel syndrome: new agents targeting serotonin receptor subtypes. Drugs 61, 317â332 (2001).
Ford, A. C. et al. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 104, 1831â1843 (2009).
Kawabata, A. et al. Hydrogen sulfide as a novel nociceptive messenger. Pain 132, 74â81 (2007).
Matsunami, M. et al. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58, 751â761 (2009).
Schemann, M. & Grundy, D. Role of hydrogen sulfide in visceral nociception. Gut 58, 744â747 (2009).
Distrutti, E. et al. A nitro-arginine derivative of trimebutine (NO2-Arg-Trim) attenuates pain induced by colorectal distension in conscious rats. Pharmacol. Res. 59, 319â329 (2009).
Roediger, W. E., Duncan, A., Kapaniris, O. & Millard, S. Reducing sulfur compounds of the colon impair colonocyte nutrition: Implications for ulcerative colitis. Gastroenterology 104, 802â809 (1993).
Roediger, W. E., Duncan, A., Kapaniris, O. & Millard, S. Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin. Sci. (Lond.) 85, 623â627 (1993).
O'Neil, M. J. The Merck Index. An Encyclopedia of Chemicals, Drugs, and Biologicals (Merck & Co, Whitehouse Station, NJ, 2001).
Strocchi, A., Ellis, C. J. & Levitt, M. D. Use of metabolic inhibitors to study H2 consumption by human feces: evidence for a pathway other than methanogenesis and sulfate reduction. J. Lab. Clin. Med. 121, 320â327 (1993).
Roediger, W. E., Moore, J. & Babidge, W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig. Dis. Sci. 42, 1571â1579 (1997).
Tragnone, A. et al. Dietary habits as risk factors for inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 7, 47â51 (1995).
Truelove, S. C. Ulcerative colitis provoked by milk. Br. Med. J. 1, 154â160 (1961).
Pitcher, M. C., Beatty, E. R. & Cummings, J. H. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut 46, 64â72 (2000).
Edmond, L. M., Hopkins, M. J., Magee, E. A. & Cummings, J. H. The effect of 5-aminosalicylic acid-containing drugs on sulfide production by sulfate-reducing and amino acid-fermenting bacteria. Inflamm. Bowel Dis. 9, 10â17 (2003).
Moore, J., Babidge, W., Millard, S. & Roediger, W. Colonic luminal hydrogen sulfide is not elevated in ulcerative colitis. Dig. Dis. Sci. 43, 162â165 (1998).
Duffy, M. et al. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon Rectum 45, 384â388 (2002).
Ohge, H. et al. Association between fecal hydrogen sulfide production and pouchitis. Dis. Colon Rectum 48, 469â475 (2005).
Gibson, G. R., Cummings, J. H. & Macfarlane, G. T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Lett. 86, 103â111 (1991).
Pitcher, M. C. L., Beatty, E. R., Gibson, G. R. & Cummings, J. H. Incidence and activities of sulphate-reducing bacteria in patients with ulcerative colitis. Gut 36, A63 (1995).
Levine, J., Ellis, C. J., Furne, J. K., Springfield, J. & Levitt, M. D. Fecal hydrogen sulfide production in ulcerative colitis. Am. J. Gastroenterol. 93, 83â87 (1998).
Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L. & Faou, A. E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107â112 (2002).
Tsai, H. H., Sunderland, D., Gibson, G. R., Hart, C. A. & Rhodes, J. M. A novel mucin sulphatase from human faeces: its identification, purification and characterization. Clin. Sci. (Lond.) 82, 447â454 (1992).
Croix, J. A. et al. On the relationship between sialomucin and sulfomucin expression and hydrogenotrophic microbes in the human colonic mucosa. PLoS ONE 6, e24447 (2011).
Bjorneklett, A., Fausa, O. & Midtvedt, T. Bacterial overgrowth in jejunal and ileal disease. Scand. J. Gastroenterol. 18, 289â298 (1983).
McKay, L. F., Eastwood, M. A. & Brydon, W. G. Methane excretion in manâa study of breath, flatus, and faeces. Gut 26, 69â74 (1985).
Peled, Y., Weinberg, D., Hallak, A. & Gilat, T. Factors affecting methane production in humans. Gastrointestinal diseases and alterations of colonic flora. Dig. Dis. Sci. 32, 267â271 (1987).
Pimentel, M. et al. Methane production during lactulose breath test is associated with gastrointestinal disease presentation. Dig. Dis. Sci. 48, 86â92 (2003).
Perman, J. A. Methane and colorectal cancer. Gastroenterology 87, 728â730 (1984).
Karlin, D. A., Jones, R. D., Stroehlein, J. R., Mastromarino, A. J. & Potter, G. D. Breath methane excretion in patients with unresected colorectal cancer. J. Natl Cancer Inst. 69, 573â576 (1982).
Haines, A., Metz, G., Dilawari, J., Blendis, L. & Wiggins, H. Breath-methane in patients with cancer of the large bowel. Lancet 2, 481â483 (1977).
Pique, J. M., Pallares, M., Cuso, E., Vilar-Bonet, J. & Gassull, M. A. Methane production and colon cancer. Gastroenterology 87, 601â605 (1984).
Karlin, D. A., Mastromarino, A. J., Jones, R. D., Stroehlein, J. R. & Lorentz, O. Fecal skatole and indole and breath methane and hydrogen in patients with large bowel polyps or cancer. J. Cancer Res. Clin. Oncol. 109, 135â141 (1985).
Peled, Y. Methane production and colon cancer. Gastroenterology 88, 1294 (1985).
Kashtan, H., Rabau, M., Peled, Y., Milstein, A. & Wiznitzer, T. Methane production in patients with colorectal carcinoma. Isr. J. Med. Sci. 25, 614â616 (1989).
Sivertsen, S. M., Bjorneklett, A., Gullestad, H. P. & Nygaard, K. Breath methane and colorectal-cancer. Scand. J. Gastroenterol. 27, 25â28 (1992).
Holma, R. et al. Colonic methanogenesis in vivo and in vitro and fecal pH after resection of colorectal cancer and in healthy intact colon. Int. J. Colorectal Dis. 27, 171â178 (2011).
Babidge, W., Millard, S. & Roediger, W. Sulfides impair short chain fatty acid beta-oxidation at acyl-CoA dehydrogenase level in colonocytes: implications for ulcerative colitis. Mol. Cell. Biochem. 181, 117â124 (1998).
Cai, W. J., Wang, M. J., Ju, L. H., Wang, C. & Zhu, Y. C. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell. Biol. Int. 34, 565â572 (2010).
Deplancke, B. & Gaskins, H. R. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 17, 1310â1312 (2003).
Leschelle, X. et al. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochim. Biophys. Acta 1725, 201â212 (2005).
Christl, S. U., Eisner, H. D., Dusel, G., Kasper, H. & Scheppach, W. Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig. Dis. Sci. 41, 2477â2481 (1996).
Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9â14 (2006).
Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R. & Plewa, M. J. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455â459 (2007).
Attene-Ramos, M. S. et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen. 51, 304â314 (2010).
Kanazawa, K. et al. Factors influencing the development of sigmoid colon cancerâbacteriologic and biochemical studies. Cancer 77, 1701â1706 (1996).
Ramasamy, S., Singh, S., Taniere, P., Langman, M. J. & Eggo, M. C. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G288âG296 (2006).
Balamurugan, R., Rajendiran, E., George, S., Samuel, G. V. & Ramakrishna, B. S. Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J. Gastroenterol. Hepatol. 23, 1298â1303 (2008).
Marchesi, J. R. et al. Towards the human colorectal cancer microbiome. PLoS ONE 6 e20447 (2011).
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292â298 (2011).
Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299â306 (2011).
Fiorucci, S., Distrutti, E., Cirino, G. & Wallace, J. L. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131, 259â271 (2006).
Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 16, 1792â1798 (2002).
Wallace, J. L., Ferraz, J. & Muscara, M. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. Antioxid. Redox Signal http://dx.doi.org/10.1089/ars.2011.4351.
Furne, J., Saeed, A. & Levitt, M. D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479âR1485 (2008).
Brock, T. D. & Od'ea, K. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 33, 254â256 (1977).
Hungate, R. E. in Methods in Microbiology (eds Norris, J. R. & Ribbons, D. W.) 117â132 (Academic Press, London, 1969).
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027â1031 (2006).
Haines, A. P., Imeson, J. D. & Wiggins, H. S. Relation of breath methane with obesity and other factors. Int. J. Obes. 8, 675â680 (1984).
Million, M. et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. (Lond.) http://dx.doi.org/10.1038/ijo.2011.153.
Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18, 190â195 (2010).
Armougom, F., Henry, M., Vialettes, B., Raccah, D. & Raoult, D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS ONE 4, e7125 (2009).
Zheng, X. F., Sun, X. J. & Xia, Z. F. Hydrogen resuscitation, a new cytoprotective approach. Clin. Exp. Pharmacol. Physiol. 38, 155â163 (2011).
Ohsawa, I. et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 13, 688â694 (2007).
Hong, Y., Chen, S. & Zhang, J. M. Hydrogen as a selective antioxidant: a review of clinical and experimental studies. J. Int. Med. Res. 38, 1893â1903 (2010).
Huang, C. S., Kawamura, T., Toyoda, Y. & Nakao, A. Recent advances in hydrogen research as a therapeutic medical gas. Free Rad. Res. 44, 971â982 (2010).
Kajiya, M., Silva, M. J. B., Sato, K., Ouhara, K. & Kawai, T. Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem. Biophys. Res. Commun. 386, 11â15 (2009).
Nakao, A., Toyoda, Y., Sharma, P., Evans, M. & Guthrie, N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndromeâan open label pilot study. J. Clin. Biochem. Nutr. 46, 140â149 (2010).
Metz, G. L., Blendis, L. M. & Jenkins, J. A. Proceedings: alveolar H2 in the diagnosis of carbohydrate malabsorption. Gut 16, 398 (1975).
Metz, G., Gassull, M. A., Drasar, B. S., Jenkins, D. J. & Blendis, L. M. Breath-hydrogen test for small-intestinal bacterial colonisation. Lancet 1, 668â669 (1976).
El Oufir, L. et al. Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 38, 870â877 (1996).
Pimentel, M., Kong, Y. & Park, S. IBS subjects with methane on lactulose breath test have lower postprandial serotonin levels than subjects with hydrogen. Dig. Dis. Sci. 49, 84â87 (2004).
Dear, K. L., Elia, M. & Hunter, J. O. Do interventions which reduce colonic bacterial fermentation improve symptoms of irritable bowel syndrome? Dig. Dis. Sci. 50, 758â766 (2005).
Levine, J., Furne, J. K. & Levitt, M. D. Ashkenazi Jews, sulfur gases, and ulcerative colitis. J. Clin. Gastroenterol. 22, 288â291 (1996).
Duffy, M. et al. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon Rectum 45, 384â388 (2002).
Bullock, N. R., Booth, J. C. & Gibson, G. R. Comparative composition of bacteria in the human intestinal microflora during remission and active ulcerative colitis. Curr. Issues Intest. Microbiol. 5, 59â64 (2004).
Smith, F. M. et al. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased illeal pouch. Colorectal Dis. 7, 563â570 (2005).
Bambury, N., Coffey, J. C., Burke, J., Redmond, H. P. & Kirwan, W. O. Sulphomucin expression in ileal pouches: emerging differences between ulcerative colitis and familial adenomatous polyposis pouches. Dis. Colon Rectum 51, 561â567 (2008).
Coffey, J. C. et al. Pathogenesis of and unifying hypothesis for idiopathic pouchitis. Am. J. Gastroenterol. 104, 1013â1023 (2009).
Lim, M. et al. An assessment of bacterial dysbiosis in pouchitis using terminal restriction fragment length polymorphisms of 16S ribosomal DNA from pouch effluent microbiota. Dis. Colon Rectum 52, 1492â1500 (2009).
Rowan, F. et al. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis. Colon Rectum 53, 1530â1536 (2010).
Verma, R., Verma, A. K., Ahuja, V. & Paul, J. Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J. Clin. Microbiol. 48, 4279â4282 (2010).
Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971â1978 (2011).
Scanlan, P. D., Shanahan, F. & Marchesi, J. R. Culture-independent analysis of desulfovibrios in the human distal colon of healthy, colorectal cancer and polypectomized individuals. FEMS Microbiol. Ecol. 69, 213â221 (2009).
Acknowledgements
Related research was supported by grants from the NIH (RO1 CA135379) and Carle Foundation-University of Illinois Translational Research Program. The authors thank Matthew T. Leslie for help in the bibliographical search. This Review is dedicated to the scientific legacies of Dr Michael D. Levitt and Dr. Meyer J. Wolin, both of whom consistently contributed key studies over many years relating to the importance of the microbial hydrogen economy on colonic homeostasis.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to all aspects of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Carbonero, F., Benefiel, A. & Gaskins, H. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat Rev Gastroenterol Hepatol 9, 504â518 (2012). https://doi.org/10.1038/nrgastro.2012.85
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrgastro.2012.85
This article is cited by
-
Efficacy and Safety of Pea Protein and Xyloglucan Versus Simethicone in Functional Abdominal Bloating and Distension
Digestive Diseases and Sciences (2024)
-
H2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers
Microbiome (2023)
-
Fe-porphyrin: A redox-related biosensor of hydrogen molecule
Nano Research (2023)
-
Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions
Microbial Ecology (2022)
-
Rubidium chloride modulated the fecal microbiota community in mice
BMC Microbiology (2021)