Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Annexin A1 and glucocorticoids as effectors of the resolution of inflammation

Abstract

Glucocorticoids are widely used for the management of inflammatory diseases. Their clinical application stems from our understanding of the inhibitory effect of the corticosteroid hormone cortisol on several components of the immune system. Endogenous and exogenous glucocorticoids mediate their multiple anti-inflammatory effects through many effector molecules. In this Opinion article, we focus on the role of one such effector molecule, annexin A1, and summarize the recent studies that provide insight into its molecular and pharmacological functions in immune responses. In addition, we propose a model in which glucocorticoids regulate the expression and function of annexin A1 in opposing ways in innate and adaptive immune cells to mediate the resolution of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mobilization of annexin A1 in activated cells and its potential mode of action.
Figure 2: Leukocyte trafficking and fate in inflammation: annexin A1–ALXR checkpoints.
Figure 3: The annexin A1–ALXR pathway and strength of T-cell receptor signalling.
Figure 4: Model of glucocorticoid modulation of the annexin A1 pathway in immune regulation.

Similar content being viewed by others

References

  1. Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nature Immunol. 6, 1191–1197 (2005).

    Article  CAS  Google Scholar 

  2. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. Faseb J. 21, 325–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez-Rey, E., Chorny, A. & Delgado, M. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nature Rev. Immunol. 7, 52–63 (2007).

    Article  CAS  Google Scholar 

  4. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  6. Parente, L. & Solito, E. Annexin 1: more than an anti-phospholipase protein. Inflamm. Res. 53, 125–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nature Rev. Mol. Cell Biol. 6, 449–461 (2005).

    Article  CAS  Google Scholar 

  8. Morand, E. F. et al. Detection of intracellular lipocortin 1 in human leukocyte subsets. Clin. Immunol. Immunopathol. 76, 195–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Perretti, M. et al. Annexin I is stored within gelatinase granules of human neutrophils and mobilised on the cell surface upon adhesion but not phagocytosis. Cell Biol. Int. 24, 163–174 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Mulla, A., Leroux, C., Solito, E. & Buckingham, J. C. Correlation between the antiinflammatory protein annexin 1 (lipocortin 1) and serum cortisol in subjects with normal and dysregulated adrenal function. J. Clin. Endocrinol. Metab. 90, 557–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Perretti, M. et al. Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nature Med. 22, 1259–1262 (1996).

    Article  Google Scholar 

  12. Wein, S. et al. Mediation of annexin 1 secretion by a probenecid-sensitive ABC-transporter in rat inflamed mucosa. Biochem. Pharmacol. 67, 1195–1202 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Solito, E. et al. Post-translational modification plays an essential role in the translocation of annexin A1 from the cytoplasm to the cell surface. Faseb J. 20, 1498–1500 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lominadze, G. et al. Proteomic analysis of human neutrophil granules. Mol. Cell. Proteomics 4, 1503–1521 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Vong, L. et al. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J. Biol. Chem. 282, 29998–30004 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Rosengarth, A. & Luecke, H. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J. Mol. Biol. 326, 1317–1325 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Perretti, M. & Flower, R. J. Annexin 1 and the biology of the neutrophil. J. Leukoc. Biol. 75, 25–29 (2004).

    Article  CAS  Google Scholar 

  18. Lim, L. H. & Pervaiz, S. Annexin 1: the new face of an old molecule. Faseb J. 21, 968–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lim, L. H., Solito, E., Russo-Marie, F., Flower, R. J. & Perretti, M. Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin 1. Proc. Natl Acad. Sci. USA 95, 14535–14539 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walther, A., Riehemann, K. & Gerke, V. A novel ligand of the formyl peptide receptor: annexin I regulates neutrophil extravasation by interacting with the FPR. Mol. Cell 5, 831–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zouki, C., Ouellet, S. & Filep, J. G. The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. Faseb J. 14, 572–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Hayhoe, R. P. et al. Annexin 1 and its bioactive peptide inhibit neutrophil–endothelium interactions under flow: indication of distinct receptor involvement. Blood 107, 2123–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee, B. E. et al. Annexin 1 deficient neutrophils exhibit enhanced transmigration in vivo and increased responsiveness in vitro. J. Leukoc. Biol. 78, 639–646 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Mancuso, F., Flower, R. J. & Perretti, M. Leukocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post-capillary venule. Involvement of endogenous lipocortin 1. J. Immunol. 155, 377–386 (1995).

    CAS  PubMed  Google Scholar 

  25. Frey, O. et al. The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ T cells. Arthritis Res. Ther. 7, R291–R301 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by annexin-1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Ohshima, S. et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl Acad. Sci. USA 95, 8222–8226 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, Y. H. et al. Annexin 1 negatively regulates IL-6 expression via effects on p38 MAPK and MAPK phosphatase-1. J. Immunol. 177, 8148–8153 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Damazo, A. S. et al. Critical protective role for annexin 1 gene expression in the endotoxemic murine microcirculation. Am. J. Pathol. 166, 1607–1617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perretti, M. et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nature Med. 8, 1296–1302 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Chiang, N. et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol. Rev. 58, 463–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Babbin, B. A. et al. Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J. Biol. Chem. 281, 19588–19599 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. He, R., Sang, H. & Ye, R. D. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood 101, 1572–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Dahlgren, C. et al. The synthetic chemoattractant Trp-Lys-Tyr-Met-Val-DMet activates neutrophils preferentially through the lipoxin A4 receptor. Blood 95, 1810–1818 (2000).

    CAS  PubMed  Google Scholar 

  35. Solito, E. et al. A novel calcium-dependent pro-apoptotic effect of annexin 1 on human neutrophils. Faseb J. 17, 1544–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, J.-L., Chen, H., Filie, J. D., Kozak, C. A. & Murphy, P. M. Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse. Genomics 51, 270–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Perretti, M., Getting, S. J., Solito, E., Murphy, P. M. & Gao, J. L. Involvement of the receptor for formylated peptides in the in vivo anti-migratory actions of annexin 1 and its mimetics. Am. J. Pathol. 158, 1969–1973 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gavins, F. N., Yona, S., Kamal, A. M., Flower, R. J. & Perretti, M. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101, 4140–4147 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Souza, D. G. et al. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J. Immunol. 179, 8533–8543 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ferlazzo, V. et al. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis. Int. Immunopharmacol. 3, 1363–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Clark, A. R. Anti-inflammatory functions of glucocorticoid-induced genes. Mol. Cell. Endocrinol. 275, 79–97 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Goulding, N. J. et al. Anti-inflammatory lipocortin 1 production by peripheral blood leucocytes in response to hydrocortisone. Lancet 335, 1416–1418 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Solito, E., de Coupade, C., Parente, L., Flower, R. J. & Russo-Marie, F. IL-6 stimulates annexin 1 expression and translocation and suggests a new biological role as class II acute phase protein. Cytokine 10, 514–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Hannon, R. et al. Aberrant inflammation and resistance to glucocorticoids in annexin 1−/− mouse. Faseb J. 17, 253–255 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Damazo, A. S., Yona, S., Flower, R. J., Perretti, M. & Oliani, S. M. Spatial and temporal profiles for anti-inflammatory gene expression in leukocytes during a resolving model of peritonitis. J. Immunol. 176, 4410–4418 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sawmynaden, P. & Perretti, M. Glucocorticoid upregulation of the annexin-A1 receptor in leukocytes. Biochem. Biophys. Res. Commun. 349, 1351–1355 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ehrchen, J. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109, 1265–1274 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Hashimoto, A., Murakami, Y., Kitasato, H., Hayashi, I. & Endo, H. Glucocorticoids co-interact with lipoxin A4 via lipoxin A4 receptor (ALX) up-regulation. Biomed. Pharmacother. 61, 81–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Croxtall, J. D., van Hal, P. T., Choudhury, Q., Gilroy, D. W. & Flower, R. J. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells. Br. J. Pharmacol. 135, 511–519 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Franchimont, D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. NY Acad. Sci. 1024, 124–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Van Laethem, F. et al. Glucocorticoids attenuate T cell receptor signaling. J. Exp. Med. 193, 803–814 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Laethem, F., Baus, E., Andris, F., Urbain, J. & Leo, O. A novel aspect of the anti-inflammatory actions of glucocorticoids: inhibition of proximal steps of signaling cascades in lymphocytes. Cell. Mol. Life Sci. 58, 1599–1606 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Adcock, I. M. Glucocorticoid-regulated transcription factors. Pulm. Pharmacol. Ther. 14, 211–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Ramirez, F., Fowell, D. J., Puklavec, M., Simmonds, S. & Mason, D. Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J. Immunol. 156, 2406–2412 (1996).

    CAS  PubMed  Google Scholar 

  55. Ramirez, F. Glucocorticoids induce a Th2 response in vitro. Dev. Immunol. 6, 233–243 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elenkov, I. J. Glucocorticoids and the Th1/Th2 balance. Ann. NY Acad. Sci. 1024, 138–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Richards, D. F., Fernandez, M., Caulfield, J. & Hawrylowicz, C. M. Glucocorticoids drive human CD8+ T cell differentiation towards a phenotype with high IL-10 and reduced IL-4, IL-5 and IL-13 production. Eur. J. Immunol. 30, 2344–2354 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. D'Acquisto, F. et al. Annexin-1 modulates T-cell activation and differentiation. Blood 109, 1095–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. D'Acquisto, F. et al. Impaired T cell activation and increased Th2 lineage commitment in annexin-1-deficient T cells. Eur. J. Immunol. 37, 3131–3142 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Ebisuya, M., Kondoh, K. & Nishida, E. The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J. Cell Sci. 118, 2997–3002 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Boyton, R. J. & Altmann, D. M. Is selection for TCR affinity a factor in cytokine polarization? Trends Immunol. 23, 526–529 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Marti, F., Lapinski, P. E. & King, P. D. The emerging role of the T cell-specific adaptor (TSAd) protein as an autoimmune disease-regulator in mouse and man. Immunol. Lett. 97, 165–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Tagoe, C. E. et al. Annexin-1 mediates TNF-α-stimulated matrix metalloproteinase secretion from rheumatoid arthritis synovial fibroblasts. J. Immunol. 181, 2813–2820 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. D'Acquisto, F. et al. Glucocorticoid treatment inhibits annexin-1 expression in rheumatoid arthritis CD4+ T cells. Rheumatology (Oxford) 47, 636–639 (2008).

    Article  CAS  Google Scholar 

  65. Caramori, G. et al. Expression of GATA family of transcription factors in T-cells, monocytes and bronchial biopsies. Eur. Respir. J. 18, 466–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, M. & Ouyang, W. The function role of GATA-3 in Th1 and Th2 differentiation. Immunol. Res. 28, 25–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Jee, Y. K. et al. Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment. J. Biol. Chem. 280, 23243–23250 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Barrionuevo, P. et al. A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 178, 436–445 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Anderson, A. C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Ito, K. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J. Exp. Med. 203, 7–13 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song, I. H. & Buttgereit, F. Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol. Cell. Endocrinol. 246, 142–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lowenberg, M. et al. Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep. 7, 1023–1029 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Moraes, L. A. et al. Ligand-specific glucocorticoid receptor activation in human platelets. Blood 106, 4167–4175 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Badolato, R. et al. Serum amyloid A induces calcium mobilization and chemotaxis of human monocytes by activating a pertussis toxin-sensitive signaling pathway. J. Immunol. 155, 4004–4010 (1995).

    CAS  PubMed  Google Scholar 

  75. Le, Y. et al. Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21, RC123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu, H. et al. Ligand recognition and activation of formyl peptide receptors in neutrophils. J. Leukoc. Biol. 79, 247–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Le, Y. et al. Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. Febs J. 272, 769–778 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Rodrigues-Lisoni, F. C. et al. In vitro and in vivo studies on CCR10 regulation by annexin A1. FEBS Lett. 580, 1431–1438 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lange, C., Starrett, D., Goetsch, J., Gerke, V. & Rescher, U. Transcriptional profiling of human monocytes reveals complex changes in the expression pattern of inflammation-related genes in response to the annexin A1-derived peptide Ac1–25. J. Leukoc. Biol. 82, 1592–1604 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Burli, R. W. et al. Potent hFPRL1 (ALXR) agonists as potential anti-inflammatory agents. Bioorg. Med. Chem. Lett. 16, 3713–3718 (2006).

    Article  PubMed  CAS  Google Scholar 

  81. Gilmour, J. S. et al. Local amplification of glucocorticoids by 11 β-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J. Immunol. 176, 7605–7611 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999).

    CAS  PubMed  Google Scholar 

  83. Scannell, M. et al. Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J. Immunol. 178, 4595–4605 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Maderna, P., Yona, S., Perretti, M. & Godson, C. Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2–26. J. Immunol. 174, 3727–3733 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is funded by the Arthritis Research Campaign UK, the Wellcome Trust, the British Heart Foundation and the Medical Research Council UK. We apologize to the many colleagues whose work could not be cited here owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Perretti.

Ethics declarations

Competing interests

M.P. declares licensing of a patent on ANXA1-derived anti-inflammatory peptides to Unigene Corp (Fairfield, New Jersey).

Related links

Related links

FURTHER INFORMATION

Mauro Perretti's homepage

Fulvio D'Acquisto's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perretti, M., D'Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9, 62–70 (2009). https://doi.org/10.1038/nri2470

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing