Key Points
-
Neutrophils have long been viewed as short-lived effector cells of the innate immune system, with a primary role in resistance against extracellular pathogens and in acute inflammation.
-
Neutrophils express a vast repertoire of pattern recognition receptors and in response to signals undergo functional reprogramming. In addition to classical antimicrobial molecules (such as reactive oxygen intermediates), the effector repertoire of neutrophils includes an array of cytokines and chemokines, components of the humoral arm of innate immunity (such as pentraxin 3) and the formation of neutrophil extracellular traps. Thus, the participation of these 'unsung heroes' to mechanisms of innate resistance goes well beyond the production of microorganism- and tissue-damaging molecules, to include a diverse, highly regulated, customized production of cytokines and antibody-like soluble pattern recognition molecules, as well as the release of neutrophil extracellular traps.
-
Once recruited into tissues, neutrophils engage in complex bidirectional interactions with macrophages, mesenchymal stem cells, dendritic cells, natural killer cells, and B and T cells.
-
In particular, neutrophils contribute to the activation, orientation and expression of adaptive immune responses.
-
Given their role as a component of innate and adaptive responses, it is not surprising that neutrophils have emerged as important players in the pathogenesis of numerous disorders, including infection caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.
-
These new perspectives raise the issue of targeting neutrophils as a therapeutic strategy in immunopathology.
Abstract
Neutrophils have long been viewed as the final effector cells of an acute inflammatory response, with a primary role in the clearance of extracellular pathogens. However, more recent evidence has extended the functions of these cells. The newly discovered repertoire of effector molecules in the neutrophil armamentarium includes a broad array of cytokines, extracellular traps and effector molecules of the humoral arm of the innate immune system. In addition, neutrophils are involved in the activation, regulation and effector functions of innate and adaptive immune cells. Accordingly, neutrophils have a crucial role in the pathogenesis of a broad range of diseases, including infections caused by intracellular pathogens, autoimmunity, chronic inflammation and cancer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657â670 (2010).
Nathan, C. Neutrophils and immunity: challenges and opportunities. Nature Rev. Immunol. 6, 173â182 (2006).
Colotta, F., Re, F., Polentarutti, N., Sozzani, S. & Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80, 2012â2020 (1992).
Cassatella, M. A. Neutrophil-derived proteins: selling cytokines by the pound. Adv. Immunol. 73, 369â509 (1999).
Kobayashi, S. D. & DeLeo, F. R. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 309â333 (2009).
Pelletier, M. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115, 335â343 (2010). This paper provides the first evidence that human neutrophils and T H 17 cells, upon activation, can directly recruit each other, via specific chemokine release.
Kotz, K. T. et al. Clinical microfluidics for neutrophil genomics and proteomics. Nature Med. 16, 1042â1047 (2010).
Bazzoni, F. et al. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl Acad. Sci. USA 106, 5282â5287 (2009).
Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: âN1â versus âN2â TAN. Cancer Cell 16, 183â194 (2009). This was the first study supporting the view that TANs can be polarized towards an 'N1' or an 'N2' phenotype, mirroring M1 and M2 macrophages.
Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Rev. Immunol. 10, 479â489 (2010).
Segal, A. W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197â223 (2005).
Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104â107 (2010).
McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362â366 (2010). Taking advantage of dynamic in vivo imaging to visualize the innate immune response, this report uncovers a multistep hierarchy of directional cues that guides neutrophil localization in a mouse model of sterile liver inflammation.
Hayashi, F., Means, T. K. & Luster, A. D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660â2669 (2003).
Greenblatt, M. B., Aliprantis, A., Hu, B. & Glimcher, L. H. Calcineurin regulates innate antifungal immunity in neutrophils. J. Exp. Med. 207, 923â931 (2010). This paper elucidates that the increased susceptibility to fungal infections observed in patients treated with cyclosporine A, one of the most potent immunosuppressants available, is not the consequence of its broad inhibition of T cell responses but rather maps to the function of calcineurin B in neutrophils.
Kerrigan, A. M. et al. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J. Immunol. 182, 4150â4157 (2009).
Tamassia, N. et al. Activation of an immunoregulatory and antiviral gene expression program in poly(I:C)-transfected human neutrophils. J. Immunol. 181, 6563â6573 (2008).
Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Med. 16, 228â231 (2010).
Scapini, P., Bazzoni, F. & Cassatella, M. A. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett. 116, 1â6 (2008).
Yamada, M. et al. Interferon-γ production by neutrophils during bacterial pneumonia in mice. Am. J. Respir. Crit. Care Med. 183, 1391â1401 (2011).
Huard, B. et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J. Clin. Invest. 118, 2887â2895 (2008).
Gabay, C. et al. Synovial tissues concentrate secreted APRIL. Arthritis Res. Ther. 11, R144 (2009).
Roosnek, E. et al. Tumors that look for their springtime in APRIL. Crit. Rev. Oncol. Hematol. 72, 91â97 (2009).
Chakravarti, A., Raquil, M. A., Tessier, P. & Poubelle, P. E. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114, 1633â1644 (2009). This paper uncovers a new biological feature of human, as well as mouse, neutrophils. These cells are important in osteoclastogenesis, through their capacity to activate osteoclastic bone resorption.
Poubelle, P. E., Chakravarti, A., Fernandes, M. J., Doiron, K. & Marceau, A. A. Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res. Ther. 9, R25 (2007).
Ethuin, F. et al. Human neutrophils produce interferon γ upon stimulation by interleukin-12. Lab. Invest. 84, 1363â1371 (2004).
Pelletier, M., Micheletti, A. & Cassatella, M. A. Modulation of human neutrophil survival and antigen expression by activated CD4+ and CD8+ T cells. J. Leukoc. Biol. 88, 1163â1170 (2010).
Reglier, H., Arce-Vicioso, M., Fay, M., Gougerot-Pocidalo, M. A. & Chollet-Martin, S. Lack of IL-10 and IL-13 production by human polymorphonuclear neutrophils. Cytokine 10, 192â198 (1998).
De Santo, C. et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nature Immunol. 11, 1039â1046 (2010).
Cassatella, M. A., Locati, M. & Mantovani, A. Never underestimate the power of a neutrophil. Immunity 31, 698â700 (2009).
Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C. & Lo-Man, R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31, 761â771 (2009). A study demonstrating that, in mice, neutrophils represent a major source of IL-10.
Tsuda, Y. et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215â226 (2004).
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532â1535 (2004).
Bottazzi, B., Doni, A., Garlanda, C. & Mantovani, A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu. Rev. Immunol. 28, 157â183 (2010).
Jaillon, S. et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J. Exp. Med. 204, 793â804 (2007).
Lu, J. et al. Structural recognition and functional activation of FcγR by innate pentraxins. Nature 456, 989â992 (2008).
Moalli, F. et al. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116, 5170â5180 (2010).
Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nature Immunol. 11, 328â334 (2010).
Cho, J. H. et al. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood 106, 2551â2558 (2005).
Dziarski, R., Platt, K. A., Gelius, E., Steiner, H. & Gupta, D. Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic Gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102, 689â697 (2003).
Rorvig, S. et al. Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with fMLP. J. Leukoc. Biol. 86, 1439â1449 (2009).
Parham, P. Innate immunity: the unsung heroes. Nature 423, 20 (2003).
Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nature Rev. Immunol. 10, 427â439 (2010).
Brandau, S. et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge. J. Leukoc. Biol. 88, 1005â1015 (2010).
Cassatella, M. A. et al. Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29, 1001â1011 (2011).
Bennouna, S. & Denkers, E. Y. Microbial antigen triggers rapid mobilization of TNF-α to the surface of mouse neutrophils transforming them into inducers of high-level dendritic cell TNF-α production. J. Immunol. 174, 4845â4851 (2005).
Megiovanni, A. M. et al. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J. Leukoc. Biol. 79, 977â988 (2006).
van Gisbergen, K. P., Ludwig, I. S., Geijtenbeek, T. B. & van Kooyk, Y. Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Lett. 579, 6159â6168 (2005).
van Gisbergen, K. P., Sanchez-Hernandez, M., Geijtenbeek, T. B. & van Kooyk, Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201, 1281â1292 (2005).
Maffia, P. C. et al. Neutrophil elastase converts human immature dendritic cells into transforming growth factor-β1-secreting cells and reduces allostimulatory ability. Am. J. Pathol. 171, 928â937 (2007).
Hess, C., Sadallah, S., Hefti, A., Landmann, R. & Schifferli, J. A. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564â4573 (1999).
Eken, C. et al. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J. Immunol. 180, 817â824 (2008).
Gasser, O. & Schifferli, J. A. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104, 2543â2548 (2004).
Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416â429 (2010).
Costantini, C. & Cassatella, M. A. The defensive alliance between neutrophils and NK cells as a novel arm of innate immunity. J. Leukoc. Biol. 89, 221â233 (2011).
Costantini, C. et al. Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3. Blood 117, 1677â1686 (2011). This study provides a novel perspective on the cooperative strategies used by the innate immune system in humans by showing that neutrophils can amplify the crosstalk between NK cells and a specific subset of DCs.
MacDonald, K. P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512â4520 (2002).
Schakel, K. Dendritic cells â why can they help and hurt us. Exp. Dermatol. 18, 264â273 (2009).
Costantini, C. et al. On the potential involvement of CD11d in co-stimulating the production of interferon-γ by natural killer cells upon interaction with neutrophils via intercellular adhesion molecule-3. Haematologica 28 Jun 2011 (doi:10.3324/haematol.044578).
Costantini, C. et al. Neutrophil activation and survival are modulated by interaction with NK cells. Int. Immunol. 22, 827â838 (2010).
Bhatnagar, N. et al. Cytokine-activated NK cells inhibit PMN apoptosis and preserve their functional capacity. Blood 116, 1308â1316 (2010).
Himmel, M. E. et al. Human CD4+ FOXP3+ regulatory T cells produce CXCL8 and recruit neutrophils. Eur. J. Immunol. 41, 306â312 (2011).
Davey, M. S. et al. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog. 7, e1002040 (2011).
Abi Abdallah, D. S., Egan, C. E., Butcher, B. A. & Denkers, E. Y. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int. Immunol. 23, 317â326 (2011).
Beauvillain, C. et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110, 2965â2973 (2007).
Abadie, V. et al. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood 106, 1843â1850 (2005).
Chtanova, T. et al. Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29, 487â496 (2008). This study uses two-photon microscopy to detail the behaviour of neutrophils in lymph nodes during infection.
Beauvillain, C. et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117, 1196â1204 (2011). This study identifies a potential mechanism involved in the migration of neutrophils to the draining lymph nodes.
Yang, C. W., Strong, B. S., Miller, M. J. & Unanue, E. R. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J. Immunol. 185, 2927â2934 (2010). This study unravels a regulatory function of neutrophils in lymph nodes during an immune response.
Serhan, C. N., Chiang, N. & Van Dyke, T. E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Rev. Immunol. 8, 349â361 (2008).
Schwab, J. M., Chiang, N., Arita, M. & Serhan, C. N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447, 869â874 (2007).
Spite, M. et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461, 1287â1291 (2009).
Serhan, C. N. et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 206, 15â23 (2009).
Arita, M. et al. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J. Immunol. 178, 3912â3917 (2007).
Ariel, A. et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nature Immunol. 7, 1209â1216 (2006).
McKimmie, C. S. et al. Hemopoietic cell expression of the chemokine decoy receptor D6 is dynamic and regulated by GATA1. J. Immunol. 181, 3353â3363 (2008).
Bourke, E. et al. IL-1 β scavenging by the type II IL-1 decoy receptor in human neutrophils. J. Immunol. 170, 5999â6005 (2003).
Bazzoni, F., Tamassia, N., Rossato, M. & Cassatella, M. A. Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: lessons from neutrophils. Eur. J. Immunol. 40, 2360â2368 (2010).
Fox, S., Leitch, A. E., Duffin, R., Haslett, C. & Rossi, A. G. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2, 216â227 (2010).
Jeannin, P., Jaillon, S. & Delneste, Y. Pattern recognition receptors in the immune response against dying cells. Curr. Opin. Immunol. 20, 530â537 (2008).
Filardy, A. A. et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages. J. Immunol. 185, 2044â2050 (2010).
Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol. 11, 889â896 (2010).
Bystrom, J. et al. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112, 4117â4127 (2008).
Silva, M. T. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J. Leukoc. Biol. 87, 93â106 (2010).
Jankowski, A., Scott, C. C. & Grinstein, S. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem. 277, 6059â6066 (2002).
Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973â977 (2010). This study highlights the importance of genome analysis in the study of pathologies. Here, a genome-wide transcriptional signature shows that neutrophils and IFN signalling are linked to the pathogenesis of tuberculosis.
Pedrosa, J. et al. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect. Immun. 68, 577â583 (2000).
Weathington, N. M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med. 12, 317â323 (2006).
Snelgrove, R. J. et al. A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330, 90â94 (2010). Here, the authors uncover a novel mechanism whereby cigarette smoke perpetuates neutrophil chemotaxis, with implications for new therapeutic strategies to treat debilitating lung disorders.
Alves-Filho, J. C. et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Med. 16, 708â712 (2010).
Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463â469 (2007).
Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nature Med. 16, 887â896 (2010). This study demonstrates a novel effector function of neutrophils by providing unequivocal in vivo evidence that neutrophils can activate the coagulation cascade as an antimicrobial mechanism.
Baetta, R. & Corsini, A. Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis 210, 1â13 (2010).
Hidalgo, A. et al. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nature Med. 15, 384â391 (2009).
Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711â723 (2003).
Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813â9818 (2010).
Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNAâpeptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011). References 97 and 98 strengthen the concept that an interaction between neutrophils and other cell types might represent a crucial pathogenic event. Crosstalk between neutrophils and pDCs could represent the driving force for the development of SLE.
Chen, M. & Kallenberg, C. G. ANCA-associated vasculitides â advances in pathogenesis and treatment. Nature Rev. Rheumatol. 6, 653â664 (2010).
Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature Med. 15, 623â625 (2009).
Chou, R. C. et al. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33, 266â278 (2010). This study provides a detailed picture of the diverse molecules that sequentially act on neutrophils to drive their migration in a mouse model of inflammation.
Carlson, T., Kroenke, M., Rao, P., Lane, T. E. & Segal, B. The Th17âELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 205, 811â823 (2008).
Liu, L. et al. CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nature Neurosci. 13, 319â326 (2010).
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646â674 (2011).
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436â444 (2008).
Borrello, M. G. et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc. Natl Acad. Sci. USA 102, 14825â14830 (2005).
Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447â458 (2004).
Kuang, D. M. et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J. Hepatol. 54, 948â955 (2011).
Wislez, M. et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res. 63, 1405â1412 (2003).
Charles, K. A. et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011â3023 (2009).
Pekarek, L. A., Starr, B. A., Toledano, A. Y. & Schreiber, H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181, 435â440 (1995).
Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R. & Jorcyk, C. L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896â8904 (2005).
Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Med. 16, 219â223 (2010).
Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151â1164 (2010). This study uncovers a novel function of IFNβ, and provides a better understanding of the therapeutic effect of IFNβ treatment during the early stages of cancer development. Specifically, the authors demonstrate that, in a transplantable tumour model, endogenous IFNβ inhibits tumour angiogenesis through repression of genes encoding pro-angiogenic and homing factors in tumour-infiltrating neutrophils.
Keeley, E. C., Mehrad, B. & Strieter, R. M. CXC chemokines in cancer angiogenesis and metastases. Adv. Cancer Res. 106, 91â111 (2010).
Scapini, P. et al. CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J. Immunol. 172, 5034â5040 (2004).
Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493â12498 (2006).
Shojaei, F., Singh, M., Thompson, J. D. & Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl Acad. Sci. USA 105, 2640â2645 (2008).
Rodriguez, P. C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553â1560 (2009).
Cuenca, A. G. et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol. Med. 17, 281â292 (2011).
Welch, D. R., Schissel, D. J., Howrey, R. P. & Aeed, P. A. Tumor-elicited polymorphonuclear cells, in contrast to ânormalâ circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc. Natl Acad. Sci. USA 86, 5859â5863 (1989).
Colombo, M. P. et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J. Exp. Med. 173, 889â897 (1991).
Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438â1444 (2009).
Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 5, e1000639 (2009).
Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231â241 (2007).
Beiter, K. et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16, 401â407 (2006).
Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396â400 (2006).
Acknowledgements
This work is supported by Associazione Italiana per la Ricerca sul Cancro (AIRC), special project 5 Ã 1000 and the European Research Council (to A.M.); S.J. is the recipient of a Mario e Valeria Rindi Fellowship from AIRC; M.A.C. is supported by Fondazione Cariverona and AIRC. We apologize to those colleagues whose work could not be cited here owing to space limitations.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Granules
-
Neutrophils store an assortment of molecules in three types of granule (primary, secondary and tertiary). Primary granules are characterized by the accumulation of antimicrobial proteins and proteases, whereas secondary granules and tertiary granules are characterized by a high content of lactoferrin and gelatinase, respectively. In addition, secretory vesicles contain a reservoir of membrane-associated proteins.
- Reactive oxygen intermediates
-
(ROI). In the context of this Review, this term refers to various reactive oxygen species, including superoxide anions produced by phagocytes via the activation of the NADPH oxidase enzymatic system, and other compounds derived from superoxide anion metabolism, such as hydrogen peroxide and hydroxyl radicals. ROI are crucial for the antimicrobial activity of neutrophils.
- MicroRNAs
-
Single-stranded RNA molecules of approximately 21â23 nucleotides in length that are thought to regulate the expression of other genes.
- N-formyl peptides
-
Bacteria initiate protein synthesis with N-formylmethionine, a modified form of the amino acid methionine. The only eukaryotic proteins that contain N-formylmethionine, and are therefore N-formylated, are those encoded by mitochondria.
- Pattern recognition receptor
-
A germline-encoded receptor that recognizes unique and essential structures that are present in microorganisms, but absent from the host. In vertebrates, signalling through these receptors leads to the production of pro-inflammatory cytokines and chemokines and to the expression of co-stimulatory molecules by antigen-presenting cells.
- Inflammasome
-
A molecular complex of several proteins â including members of the NOD-like receptor family â that upon assembly cleaves pro-interleukin-1 β (pro-IL-1β) and pro-IL-18, thereby producing the active cytokines.
- Osteoclastogenesis
-
A process whereby haematopoietic stem cells differentiate into multinucleated osteoclasts with bone-resorbing activity.
- Complement cascade
-
There are three independent pathways that can lead to the activation of the complement cascade. The classical pathway is activated via C1q binding to immune complexes; the alternative pathway is triggered by direct C3 activation; and the lectin pathway is initiated by the interaction of mannose-binding lectin with the surface of microorganisms.
- NETosis
-
A form of cell death that differs from classical apoptosis and necrosis, and that occurs during the formation of neutrophil extracellular traps.
- Ectosomes
-
Large membrane vesicles (>100nm diameter) that are secreted by budding or shedding from the plasma membrane.
- SLAN
-
(6-sulpho LacNAc). A carbohydrate modification of P-selectin glycoprotein ligand 1 (PSGL1). SLAN is expressed by a subset of dendritic cells found in human blood and is recognized by the monoclonal antibody MDC8.
- Resolvins
-
Lipid mediators that are induced in the resolution phase following acute inflammation. They are synthesized from the essential omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid.
- Eat-me signals
-
Signals emitted by dying cells to facilitate their recognition and phagocytosis by neighbouring healthy cells.
- Chronic obstructive pulmonary disease
-
(COPD). A group of diseases characterized by the pathological limitation of airflow in the airway, including chronic obstructive bronchitis and emphysema. It is most often caused by tobacco smoking, but can also be caused by other airborne irritants (such as coal dust) and occasionally by genetic abnormalities, such as α1-antitrypsin deficiency.
- Antinuclear antibodies
-
(ANAs). Heterogeneous autoantibodies specific for one or more antigens present in the nucleus, including chromatin, nucleosomes and ribonuclear proteins. ANAs are found in association with many different autoimmune diseases.
- K/BxN transgenic mouse
-
A mouse strain formed by crossing NOD/Lt mice with C57BL/6 KRN T cell receptor-transgenic mice in which T cells recognize a peptide from the autoantigen glucose-6-phosphate isomerase (GPI). These mice develop a form of arthritis that is mediated, and can be transferred, by circulating antibody specific for GPI.
- Immunoediting
-
The process by which interaction of a heterogeneous population of tumour cells with the immune system generates tumour variants with reduced immunogenicity that might therefore escape from immune responses.
- Angiogenesis
-
The development of new blood vessels from existing blood vessels. Angiogenesis is a normal and vital process in growth and development, as well as in wound healing and in granulation tissue formation. It is also a fundamental step for the growth of dormant tumours.
- Myeloid-derived suppressor cells
-
A heterogenous collection of cells at different stages in the myeloid and monocytic differentiation pathway that have immunosuppressive functions. These cells include bona fide monocytes and neutrophils.
Rights and permissions
About this article
Cite this article
Mantovani, A., Cassatella, M., Costantini, C. et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11, 519â531 (2011). https://doi.org/10.1038/nri3024
Published:
Issue Date:
DOI: https://doi.org/10.1038/nri3024
This article is cited by
-
Neutrophil extracellular traps formation: effect of Leishmania major promastigotes and salivary gland homogenates of Phlebotomus papatasi in human neutrophil culture
BMC Microbiology (2024)
-
Neutrophils in cancer: dual roles through intercellular interactions
Oncogene (2024)
-
Neutrophil extracellular trap-associated risk index for predicting outcomes and response to Wnt signaling inhibitors in triple-negative breast cancer
Scientific Reports (2024)
-
Neutrophils bearing adhesive polymer micropatches as a drug-free cancer immunotherapy
Nature Biomedical Engineering (2024)
-
Tumor-associated neutrophils suppress CD8+ T cell immunity in urothelial bladder carcinoma through the COX-2/PGE2/IDO1 Axis
British Journal of Cancer (2024)