Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune defence against Candida fungal infections

Subjects

Key Points

  • Candida albicans is the most important fungal pathogen in humans, and it causes both mucosal and systemic fungal infections.

  • Innate immune recognition by pattern recognition receptors (PRRs) is the first step for activation of host defence mechanisms during Candida infections. C-type lectin receptors (CLRs) are the main family of PRRs involved in recognition of Candida species, but Toll-like receptors, NOD-like receptors and RIG-I-like receptors are also involved in the antifungal response.

  • Neutrophils, monocytes and macrophages are the main immune cell populations responsible for host defence against systemic candidiasis, whereas T helper 1 (TH1) cells, TH17 cells and innate lymphoid cells are mainly responsible for protection against Candida infections at mucosal surfaces.

  • C. albicans and components from its cell wall, particularly β-glucans, have the capacity to induce epigenetic reprogramming of innate immune cells, generating a de facto innate immune memory that has been termed 'trained immunity'.

  • Systems biology approaches combining innovative genomic, microbiome and functional data open new possibilities for identifying key mechanisms in the pathophysiology of fungal infections.

  • Future efforts need to combine cutting-edge molecular and cell-biological techniques with translational approaches in order to gain a better understanding of the host immune response to Candida infections and enable the design of novel antifungal strategies.

Abstract

The immune response to Candida species is shaped by the commensal character of the fungus. There is a crucial role for discerning between colonization and invasion at mucosal surfaces, with the antifungal host defence mechanisms used during mucosal or systemic infection with Candida species differing substantially. Here, we describe how innate sensing of fungi by pattern recognition receptors and the interplay of immune cells (both myeloid and lymphoid) with non-immune cells, including platelets and epithelial cells, shapes host immunity to Candida species. Furthermore, we discuss emerging data suggesting that both the innate and adaptive immune systems display memory characteristics after encountering Candida species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of Candida species by innate immune cells.
Figure 2: Interleukin-1β processing during Candida infection.
Figure 3: Effector mechanisms for the clearance of Candida.

Similar content being viewed by others

References

  1. Brown, G. D., Denning, D. W. & Levitz, S. M. Tackling human fungal infections. Science 336, 647 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Gudlaugsson, O. et al. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37, 1172–1177 (2003).

    Article  PubMed  Google Scholar 

  3. Wisplinghoff, H. et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309–317 (2004).

    Article  PubMed  Google Scholar 

  4. Shibata, N., Suzuki, A., Kobayashi, H. & Okawa, Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem. J. 404, 365–372 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lowman, D. W. et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J. Biol. Chem. 289, 3432–3443 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Munro, C. A., Schofield, D. A., Gooday, G. W. & Gow, N. A. Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiol. 144, 391–401 (1998).

    Article  CAS  Google Scholar 

  7. Naglik, J. Candida immunity. New J. Sci. 1, 1–27 (2014).

    Article  CAS  Google Scholar 

  8. Davis, S. E. et al. Masking of β(1-3)-glucan in the cell wall of Candida albicans from detection by innate immune cells depends on phosphatidylserine. Infect. Immun. 82, 4405–4413 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001). This study was the first to describe a specific CLR for the recognition of fungal β-glucans, which are a crucial component of the C. albicans cell wall.

    Article  CAS  PubMed  Google Scholar 

  10. Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, G. D. et al. Dectin-1 is a major β-glucan receptor on macrophages. J. Exp. Med. 196, 407–412 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitney, P. G. et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog. 10, e1004276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bishu, S. et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect. Immun. 82, 1173–1180 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009). References 13–15 describe the function of CARD9, the main adaptor molecule for several important CLRs, and reported the CARD9 primary immunodeficiency, which leads to very severe disseminated Candida infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strasser, D. et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gringhuis, S. I. et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol. 10, 203–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, G. D. et al. Dectin-1 mediates the biological effects of β-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferwerda, G., Meyer-Wentrup, F., Kullberg, B. J., Netea, M. G. & Adema, G. J. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell. Microbiol. 10, 2058–2066 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S. & Underhill, D. M. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107–1117 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 5, 1017–1025 (2014).

    Article  CAS  Google Scholar 

  22. Marakalala, M. J. et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cunha, C., Aversa, F., Romani, L. & Carvalho, A. Human genetic susceptibility to invasive aspergillosis. PLoS Pathog. 9, e1003434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smeekens, S. P., van de Veerdonk, F. L., Kullberg, B. J. & Netea, M. G. Genetic susceptibility to Candida infections. EMBO Mol. Med. 5, 805–813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Luca, A. et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog. 9, e1003486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drewniak, A. et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121, 2385–2392 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Drummond, R. A., Saijo, S., Iwakura, Y. & Brown, G. D. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur. J. Immunol. 41, 276–281 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. van Bruggen, R. et al. Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for β-glucan-bearing particles. Mol. Immunol. 47, 575–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Gazendam, R. P. et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124, 590–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Smeekens, S. P. et al. An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine 71, 215–222 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Hall, R. A. et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathogens 9, e1003276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cambi, A. et al. Dendritic cell interaction with Candida albicans critically depends on N-linked mannan. J. Biol. Chem. 283, 20590–20599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saijo, S. et al. Dectin-2 recognition of α-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. van de Veerdonk, F. L. et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5, 329–340 (2009). This study described mannose receptor as an important receptor for C. albicans mannans that has a key role in the induction of protective T H 17 cell responses.

    Article  CAS  PubMed  Google Scholar 

  36. Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Ifrim, D. C. et al. Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infect. Immun. 82, 1064–1073 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhu, L. L. et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Linden, J. R., De Paepe, M. E., Laforce-Nesbitt, S. S. & Bliss, J. M. Galectin-3 plays an important role in protection against disseminated candidiasis. Med. Mycol. 51, 641–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Wells, C. A. et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J. Immunol. 180, 7404–7413 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Saevarsdottir, S., Vikingsdottir, T. & Valdimarsson, H. The potential role of mannan-binding lectin in the clearance of self-components including immune complexes. Scand. J. Immunol. 60, 23–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Means, T. K. et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206, 637–653 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nahum, A., Dadi, H., Bates, A. & Roifman, C. M. The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J. Allergy Clin. Immunol. 127, 528–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Wagener, J. et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 10, e1004050 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Jaeger, M. et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur. J. Clin. Immunol. Infect. Dis. 34, 963–974 (2015).

    CAS  Google Scholar 

  49. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009). This study is the first to describe the role of the inflammasome in antifungal host defence.

    Article  CAS  PubMed  Google Scholar 

  51. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Joly, S. et al. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183, 3578–3581 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Gow, N. A., van de Veerdonk, F. L., Brown, A. J. & Netea, M. G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10, 112–122 (2012).

    Article  CAS  Google Scholar 

  54. Cheng, S. C. et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leuk. Biol. 90, 357–366 (2011). This study proposes differential recognition of yeasts and hyphae by the inflammasome as an important mechanism for discrimination between colonization and invasion of mucosae.

    Article  CAS  Google Scholar 

  55. Pietrella, D. et al. Secreted aspartic proteases of Candida albicans activate the NLRP3 inflammasome. Eur. J. Immunol. 43, 679–692 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Robinson, M. J. et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J. Exp. Med. 206, 2037–2051 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13, 246–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Ganesan, S. et al. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J. Immunol. 193, 2519–2530 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wellington, M., Koselny, K., Sutterwala, F. S. & Krysan, D. J. Candida albicans triggers NLRP3- mediated pyroptosis in macrophages. Eukar. Cell. 13, 329–340 (2014).

    Article  CAS  Google Scholar 

  60. Uwamahoro, N. et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio 5, e00003–e00014 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tomalka, J. et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathogens 7, e1002379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van de Veerdonk, F. L. et al. Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1β production by the fungal pathogen Candida albicans. J. Infect. Dis. 199, 1087–1096 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Netea, M. G., van de Veerdonk, F. L., van der Meer, J. W., Dinarello, C. A. & Joosten, L. A. Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Kullberg, B. J., van 't Wout, J. W. & van Furth, R. Role of granulocytes in increased host resistance to Candida albicans induced by recombinant interleukin-1. Infect. Immun. 58, 3319–3324 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vonk, A. G., Netea, M. G., van der Meer, J. W. & Kullberg, B. J. Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy. Exp. Opin. Biol. Ther. 6, 891–903 (2006).

    Article  CAS  Google Scholar 

  68. Mencacci, A. et al. Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect. Immun. 68, 5126–5131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beausejour, A., Grenier, D., Goulet, J. P. & Deslauriers, N. Proteolytic activation of the interleukin-1β precursor by Candida albicans. Infect. Immun. 66, 676–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gow, N. A., Brown, A. J. & Odds, F. C. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van der Graaf, C. A., Netea, M. G., Verschueren, I., van der Meer, J. W. & Kullberg, B. J. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infec. Immun. 73, 7458–7464 (2005).

    Article  CAS  Google Scholar 

  73. Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunke, S. & Hube, B. Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell. Microbiol. 15, 701–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weindl, G. et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Invest. 117, 3664–3672 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Moyes, D. L. et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8, 225–235 (2010). This study describes the recognition of yeasts and hyphae by epithelial cells and the mechanisms of discrimination between these two morphological forms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moyes, D. L. et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS ONE 6, e26580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eyerich, S. et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 41, 1894–1901 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Tomalka, J. et al. β-defensin 1 plays a role in acute mucosal defense against Candida albicans. J. Immunol. 194, 1788–1795 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Qian, Q., Jutila, M. A., van Rooijen N. & Cutler, J. E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. 152, 5000–5008 (1994).

    CAS  PubMed  Google Scholar 

  81. Ngo, L. Y. et al. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209, 109–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Lionakis, M. S. et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Cin. Invest. 123, 5035–5051 (2013). This is the first study to describe the crucial role of chemokine receptors in host defence against C. albicans.

    Article  CAS  Google Scholar 

  83. Break, T. J. et al. CX3CR1 is dispensable for control of mucosal Candida albicans infections in mice and humans. Infect. Immun. 83, 958–965 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Smeekens, S. P. et al. The classical CD14++ CD16− monocytes, but not the patrolling CD14+ CD16+ monocytes, promote Th17 responses to Candida albicans. Eur. J. Immunol. 41, 2915–2924 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Horn, D. L. et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin. Infect. Dis. 48, 1695–1703 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Uzun, O., Ascioglu, S., Anaissie, E. J. & Rex, J. H. Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia. Clin. Infect. Dis. 32, 1713–1707 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Brown, G. D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aratani, Y. et al. Critical role of myeloperoxidase and nicotinamide adenine dinucleotide phosphate-oxidase in high-burden systemic infection of mice with Candida albicans. J. Infect. Dis. 185, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lehrer, R. I. Measurement of candidacidal activity of specific leukocyte types in mixed cell populations I. Normal, myeloperoxidase-deficient, and chronic granulomatous disease neutrophils. Infect. Immun. 2, 42–47 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lehrer, R. I. & Cline, M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Cin. Invest. 48, 1478–1488 (1969).

    Article  CAS  Google Scholar 

  91. Lanza, F. Clinical manifestation of myeloperoxidase deficiency. J. Mol. Med. 76, 676–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Amulic, B., Cazalet, C., Hayes, G. L., Metzler, K. D. & Zychlinsky, A. Neutrophil function: from mechanisms to disease. Annu. Rev. Immunol. 30, 459–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. McCormick, A. et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 12, 928–936 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Menegazzi, R., Decleva, E. & Dri, P. Killing by neutrophil extracellular traps: fact or folklore? Blood 119, 1214–1216 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathogens 5, e1000639 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sorensen, O. E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kahlenberg, J. M. & Kaplan, M. J. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J. Immunol. 191, 4895–4901 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, X. et al. Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. Biochim. Biophys. Acta 1798, 2201–2208 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Tsai, P. W., Yang, C. Y., Chang, H. T. & Lan, C. Y. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS ONE 6, e17755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alalwani, S. M. et al. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur. J. Immunol. 40, 1118–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nagaoka, I., Tamura, H. & Hirata, M. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7 . J. Immunol. 176, 3044–3052 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Kaloriti, D. et al. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. mBio 5, e01334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nicola, A. M. et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect. Immun. 80, 3065–3076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rosentul, D. C. et al. Role of autophagy genetic variants for the risk of Candida infections. Med. Mycol. 52, 333–341 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Smeekens, S. P. et al. Autophagy is redundant for the host defense against systemic Candida albicans infections. Eur. J. Clin. Microbiol. Infect. Dis. 33, 711–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Wirnsberger, G. et al. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense. Nat. Genet. 46, 1028–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Romani, L. et al. Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect. Immun. 61, 3769–3774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Quintin, J. et al. Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice. Eur. J. Immunol. 44, 2405–2414 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Voigt, J. et al. Human natural killer cells acting as phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J. Infect. Dis. 209, 616–626 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Biondo, C. et al. Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur. J. Immunol. 41, 1969–1979 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. del Fresno, C. et al. Interferon-β production via Dectin-1–Syk–IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38, 1176–1186 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bourgeois, C. et al. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. J. Immunol. 186, 3104–3112 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Netea, M. G. et al. Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microb. Infect. 6, 985–989 (2004).

    Article  CAS  Google Scholar 

  114. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-β. Nature 484, 514–518 (2012). This study demonstrates the presence of pathogen-specific T H 17 cells that differentially produce either IFNγ or IL-10.

    Article  CAS  PubMed  Google Scholar 

  115. Shalaby, M. R. et al. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J. Immunol. 135, 2069–2073 (1985).

    CAS  PubMed  Google Scholar 

  116. Nathan, C. F., Murray, H. W., Wiebe, M. E. & Rubin, B. Y. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med. 158, 670–689 (1983).

    Article  CAS  PubMed  Google Scholar 

  117. Netea, M. G. et al. Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur. J. Immunol. 33, 3409–3417 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Kullberg, B. J., van 't Wout, J. W., Hoogstraten, C. & van Furth, R. Recombinant interferon-γ enhances resistance to acute disseminated Candida albicans infection in mice. J. Infect. Dis. 168, 436–443 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Stuyt, R. J., Netea, M. G., van Krieken, J. H., van der Meer, J. W. & Kullberg, B. J. Recombinant interleukin-18 protects against disseminated Candida albicans infection in mice. J. Infect. Dis. 189, 1524–1527 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Delsing, C. E. et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect. Dis. 14, 166 (2014). This is a proof-of-principle clinical trial demonstrating the ability of recombinant IFNγ to restore immune defects during fungal sepsis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, W., Na, L., Fidel, P. L. & Schwarzenberger, P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. van de Veerdonk, F. L. et al. Differential effects of IL-17 pathway in disseminated candidiasis and zymosan-induced multiple organ failure. Shock 34, 407–411 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med. 365, 54–61 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011). References 125–127 report that mutations in STAT3 and STAT1 are associated with chronic mucocutaneous candidiasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yano, J. et al. The acute neutrophil response mediated by S100 alarmins during vaginal Candida infections is independent of the Th17-pathway. PLoS ONE 7, e46311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Holland, S. M. et al. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357, 1608–1619 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Langley, R. G. et al. Secukinumab in plaque psoriasis — results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  PubMed  CAS  Google Scholar 

  132. Mencacci, A. et al. Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood 97, 1483–1490 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Tavares, D., Ferreira, P. & Arala-Chaves, M. Increased resistance to systemic candidiasis in athymic or interleukin-10-depleted mice. J. Infect. Dis. 182, 266–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Vazquez-Torres, A., Jones-Carson, J., Wagner, R. D., Warner, T. & Balish, E. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun. 67, 670–674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mencacci, A. et al. Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. J. Exp. Med. 187, 307–317 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Gladiator, A., Wangler, N., Trautwein-Weidner, K. & LeibundGut-Landmann, S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J. Immunol. 190, 521–525 (2013). This study is the first to report a role for ILCs in antifungal host defence.

    Article  CAS  PubMed  Google Scholar 

  138. Conti, H. R. et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cheng, S. C. et al. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur. J. Immunol. 42, 993–1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Tsoni, S. V. et al. Complement C3 plays an essential role in the control of opportunistic fungal infections. Infect. Immun. 77, 3679–3685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mullick, A. et al. Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect. Immun. 72, 5868–5876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Magliani, W. et al. Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity. Nat. Biotechnol. 15, 155–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Polonelli, L. et al. Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like anti-idiotypic antibodies. J. Immunol. 152, 3175–3182 (1994).

    CAS  PubMed  Google Scholar 

  144. Sandini, S. et al. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol. Med. Microbiol. 62, 215–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Torosantucci, A. et al. Protection by anti-β-glucan antibodies is associated with restricted β-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS ONE 4, e5392 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Robert, R. et al. Adherence of platelets to Candida species in vivo. Infect. Immun. 68, 570–576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Drago, L., Bortolin, M., Vassena, C., Taschieri, S. & Del Fabbro, M. Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol. 13, 47 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Peters, B. M., Yano, J., Noverr, M. C. & Fidel, P. L. Jr. Candida vaginitis: when opportunism knocks, the host responds. PLoS Pathog. 10, e1003965 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Miramon, P., Kasper, L. & Hube, B. Thriving within the host: Candida spp. interactions with phagocytic cells. Med. Microbiol. Immunol. 202, 183–195 (2013).

    Article  PubMed  Google Scholar 

  150. Toth, R. et al. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Front. Microbiol. 5, 633 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Slesiona, S. et al. Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS ONE 7, e31223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Reales-Calderón, J. A., Aguilera-Montilla, N., Corbí, A. L., Molero, G. & Gil, C. Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 14, 1503–1518 (2014).

    Article  PubMed  CAS  Google Scholar 

  153. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Cin. Invest. 116, 916–928 (2006). This study reports that fungal stimulation of a TLR2–dectin 1 pathway can induce immunological tolerance.

    Article  CAS  Google Scholar 

  154. Sutmuller, R. P. et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J. Clin. Invest. 116, 485–494 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tierney, L., Kuchler, K., Rizzetto, L. & Cavalieri, D. Systems biology of host–fungus interactions: turning complexity into simplicity. Cur. Opin. Microbiol. 15, 440–446 (2012).

    Article  Google Scholar 

  156. Zaas, A. K., Aziz, H., Lucas, J., Perfect, J. R. & Ginsburg, G. S. Blood gene expression signatures predict invasive candidiasis. Sci. Transl. Med. 2, 21ra17 (2010).

    Article  PubMed  CAS  Google Scholar 

  157. Tierney, L. et al. An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front. Microbiol. 3, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Barker, K. S. et al. Transcriptome profile of the vascular endothelial cell response to Candida albicans. J. Infect. Dis. 198, 193–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Fradin, C. et al. The early transcriptional response of human granulocytes to infection with Candida albicans is not essential for killing but reflects cellular communications. Infect. Immun. 75, 1493–1501 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Smeekens, S. P. et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat. Commun. 4, 1342 (2013).

    Article  PubMed  CAS  Google Scholar 

  161. Majer, O. et al. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 8, e1002811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Moyes, D. L. et al. Protection against epithelial damage during Candida albicans infection is mediated by PI3K/Akt and mammalian target of rapamycin signaling. J. Infect. Dis. 209, 1816–1826 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Ikuta, T. et al. Identification by DNA microarray of genes involved in Candida albicans-treated gingival epithelial cells. J. Oral Pathol. Med. 41, 769–778 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Kumar, V. et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat. Commun. 5, 4675 (2014). This first GWAS of a fungal infection identifies new pathways involved in host defence against systemic Candida infections.

    Article  CAS  PubMed  Google Scholar 

  165. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Smeekens, S. P. et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun. 6, 253–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  167. Hogan, D. A., Vik, A. & Kolter, R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54, 1212–1223 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Kennedy, M. J. & Volz, P. A. Ecology of Candida albicans gut colonization: inhibition of Candida adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism. Infect. Immun. 49, 654–663 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jenkinson, H. F., Lala, H. C. & Shepherd, M. G. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect. Immun. 58, 1429–1436 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013). This is a first description of human skin mycobiome and bacteriome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Huffnagle, G. B. & Noverr, M. C. The emerging world of the fungal microbiome. Trends Microbiol. 21, 334–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012). This study demonstrates the importance of fungal colonization in a chronic inflammatory process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72, 6206–6210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Romani, L. et al. The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Sem. Immunopathol. 37, 163–171 (2015).

    Article  CAS  Google Scholar 

  178. Oever, J. T. & Netea, M. G. The bacteriome–mycobiome interaction and antifungal host defense. Eur. J. Immunol. 44, 3182–3191 (2014).

    Article  PubMed  CAS  Google Scholar 

  179. Kolwijck, E. & van de Veerdonk, F. L. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur. J. Immunol. 44, 3156–3165 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Bistoni, F. et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun. 51, 668–674 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Bistoni, F. et al. Immunomodulation by a low-virulence, agerminative variant of Candida albicans. Further evidence for macrophage activation as one of the effector mechanisms of nonspecific anti-infectious protection. J. Med. Vet. Mycol. 26, 285–299 (1988). References 180 and 181 demonstrate lymphocyte-independent, macrophage-dependent protection in a vaccination model against invasive candidiasis that represents de facto innate immune memory.

    Article  CAS  PubMed  Google Scholar 

  182. Netea, M. G., Quintin, J. & van der Meer, J. W. Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014). These studies report the epigenetic and metabolic substrates of innate immune memory (trained immunity).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Ifrim, D. C. et al. Defective trained immunity in patients with STAT1-dependent chronic mucocutaneaous candidiasis. Clin. Exp. Immunol. 181, 434–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Bekkering, S. et al. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 34, 1731–1738 (2014).

    Article  CAS  PubMed  Google Scholar 

  187. Bekkering, S., Joosten, L., Netea, M. G. & Riksen, N. P. Trained innate immunity as a mechanistic link between sepsis and atherosclerosis. Crit. Care 18, 645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Benn, C. S., Netea, M. G., Selin, L. K. & Aaby, P. A small jab — a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 34, 431–439 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Aleem, E. β-Glucans and their applications in cancer therapy: focus on human studies. Anticancer Agents Med. Chem. 13, 709–719 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.G.N. was supported by a Vici Grant of the Netherlands Organization for Scientific Research and a European Research Council Consolidator Grant (#310372). F.L.v.d.V. was supported by a Veni Grant of the Netherlands Organization for Scientific Research. The authors thank K. Becker for the help with designing the figures, and they apologize to the colleagues whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai G. Netea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Netea, M., Joosten, L., van der Meer, J. et al. Immune defence against Candida fungal infections. Nat Rev Immunol 15, 630–642 (2015). https://doi.org/10.1038/nri3897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3897

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing