Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Fanconi anaemia pathway: new players and new functions

Key Points

  • The Fanconi anaemia pathway comprises 19 Fanconi anaemia proteins (FANCA to FANCT) and many associated proteins.

  • Germline inactivation of any of the Fanconi anaemia genes causes the disease Fanconi anaemia, which is a genetic disorder characterized by bone marrow failure and predisposition to cancer.

  • The Fanconi anaemia pathway intersects with many other repair processes to respond to interstrand crosslink (ICL) DNA lesions.

  • Studies in the Xenopus egg extract system have provided important insights into the molecular mechanisms of ICL repair through the Fanconi anaemia pathway.

  • Fanconi anaemia proteins have other functions in addition to ICL repair. Fanconi anaemia proteins, notably FANCD2, have crucial roles in replication fork protection and cytokinesis.

  • The Fanconi anaemia pathway, together with other repair processes such as homologous recombination, nucleotide excision repair, translesion synthesis and alternative end joining, forms an intricate network beyond the core ICL repair components to repair diverse DNA lesions.

Abstract

The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cooperation of Fanconi anaemia, nucleotide excision repair, translesion synthesis and homologous recombination proteins in a common interstrand crosslink repair pathway.
Figure 2: The Fanconi anaemia pathway has a key role in stabilizing stalled replication forks.
Figure 3: Crosstalk between the Fanconi anaemia pathway and other repair processes.

Similar content being viewed by others

References

  1. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Howlett, N. G. et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609 (2002). This paper shows, for the first time, a connection between the Fanconi anaemia and homologous recombination pathways.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J. & Walter, J. C. Mechanism and regulation of incisions during DNA interstrand cross-link repair. DNA Repair 19, 135–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, J. et al. The DNA translocase FANCM/MHF promotes replication traverse of DNA interstrand crosslinks. Mol. Cell 52, 434–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Stone, M. P. et al. Interstrand DNA cross-links induced by α,β-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc. Chem. Res. 41, 793–804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Langevin, F., Crossan, G. P., Rosado, I. V., Arends, M. J. & Patel, K. J. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Garaycoechea, J. I. et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489, 571–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Hira, A. et al. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122, 3206–3209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deans, A. J. & West, S. C. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11, 467–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J. et al. DNA interstrand cross-link repair requires replication-fork convergence. Nat. Struct. Mol. Biol. 22, 242–247 (2015). This paper shows that converging replication forks are required for unloading of the CMG complex and subsequent ICL repair.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kottemann, M. C. & Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castella, M. et al. FANCI regulates recruitment of the FA core complex at cites of DNA damage independently of FANCD2. PLoS Genet. 11, e1005563 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev. 18, 1958–1963 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishiai, M. et al. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15, 1138–1146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hira, A. et al. Mutations in the gene encoding the E2 conjugating enzyme UBE2T cause Fanconi anemia. Am. J. Hum. Genet. 96, 1001–1007 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miles, J. A. et al. The Fanconi anemia DNA repair pathway is regulated by an interaction between ubiquitin and the E2-like fold domain of FANCL. J. Biol. Chem. 290, 20995–21006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rickman, K. A. et al. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep. 12, 35–41 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Virts, E. L. et al. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum. Mol. Genet. 24, 5093–5108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Howlett, N. G., Harney, J. A., Rego, M. A., Kolling, F. W. IV & Glover, T. W. Functional interaction between the Fanconi anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J. Biol. Chem. 284, 28935–28942 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geng, L., Huntoon, C. J. & Karnitz, L. M. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J. Cell Biol. 191, 249–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams, S. A., Longerich, S., Sung, P., Vaziri, C. & Kupfer, G. M. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 117, 5078–5087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song, I. Y. et al. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J. Biol. Chem. 285, 31525–31536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Cohn, M. A. et al. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28, 786–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Oka, Y., Bekker-Jensen, S. & Mailand, N. Ubiquitin-like protein UBL5 promotes the functional integrity of the Fanconi anemia pathway. EMBO J. 34, 1385–1398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibbs-Seymour, I. et al. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol. Cell 57, 150–164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sareen, A., Chaudhury, I., Adams, N. & Sobeck, A. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res. 40, 8425–8439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang, C. C. et al. UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway. Cell Rep. 10, 1947–1956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian, Y. et al. UHRF1 contributes to DNA damage repair as a lesion recognition factor and nuclease scaffold. Cell Rep. 10, 1957–1966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long, D. T., Joukov, V., Budzowska, M. & Walter, J. C. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56, 174–185 (2014). This paper shows that BRCA1 and ubiquitin dynamics are required for unloading of the CMG complex from chromatin when replication forks encounter an ICL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol. 13, 1376–1382 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lossaint, G. et al. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol. Cell 51, 678–690 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto, K. N. et al. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc. Natl Acad. Sci. USA 108, 6492–6496 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Crossan, G. P. et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat. Genet. 43, 147–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hodskinson, M. R. et al. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol. Cell 54, 472–484 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein Douwel, D. et al. XPF-ERCC1 acts in unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol. Cell 54, 460–471 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Nakanishi, K. et al. Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat. Struct. Mol. Biol. 18, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guervilly, J. H. et al. The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol. Cell 57, 123–137 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, T., Ghosal, G., Yuan, J., Chen, J. & Huang, J. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329, 693–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, Q., Xue, X., Longerich, S., Sung, P. & Xiong, Y. Structural insights into 5′ flap DNA unwinding and incision by the human FAN1 dimer. Nat. Commun. 5, 5726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takahashi, D., Sato, K., Hirayama, E., Takata, M. & Kurumizaka, H. Human FAN1 promotes strand incision in 5′-flapped DNA complexed with RPA. J. Biochem. 158, 263–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Pizzolato, J., Mukherjee, S., Scharer, O. D. & Jiricny, J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook, DNA interstrand cross-links in vitro. J. Biol. Chem. 290, 22602–22611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44, 910–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Segui, N. et al. Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology 149, 563–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Lachaud, C. et al. Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability. Science 351, 846–849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McHugh, P. J., Sones, W. R. & Hartley, J. A. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 3425–3433 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarkar, S., Davies, A. A., Ulrich, H. D. & McHugh, P. J. DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase ζ. EMBO J. 25, 1285–1294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gan, G. N., Wittschieben, J. P., Wittschieben, B. O. & Wood, R. D. DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Res. 18, 174–183 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Papadopoulo, D., Guillouf, C., Mohrenweiser, H. & Moustacchi, E. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl Acad. Sci. USA 87, 8383–8387 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Bomar, M. G., Pai, M. T., Tzeng, S. R., Li, S. S. & Zhou, P. Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase η. EMBO Rep. 8, 247–251 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui, G. et al. Structural basis of ubiquitin recognition by translesion synthesis DNA polymerase ι. Biochemistry 49, 10198–10207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burschowsky, D. et al. Structural analysis of the conserved ubiquitin-binding motifs (UBMs) of the translesion polymerase iota in complex with ubiquitin. J. Biol. Chem. 286, 1364–1373 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Budzowska, M., Graham, T. G., Sobeck, A., Waga, S. & Walter, J. C. Regulation of the Rev1–pol ζ complex during bypass of a DNA interstrand cross-link. EMBO J. 34, 1971–1985 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, H., Yang, K., Dejsuphong, D. & D'Andrea, A. D. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 19, 164–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim, K. et al. Biophysical characterization of the interaction between FAAP20-UBZ4 domain and Rev1-BRCT domain. FEBS Lett. 589, 3037–3043 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Sharma, S. et al. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res. 40, 682–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Wojtaszek, J. et al. Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ. J. Biol. Chem. 287, 33836–33846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mogi, S., Butcher, C. E. & Oh, D. H. DNA polymerase η reduces the γ-H2AX response to psoralen interstrand crosslinks in human cells. Exp. Cell Res. 314, 887–895 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, A. T. et al. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59, 478–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ameziane, N. et al. A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat. Commun. 6, 8829 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moldovan, G. L. et al. DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol. Cell. Biol. 30, 1088–1096 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Prakash, R., Zhang, Y., Feng, W. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7, a016600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Long, D. T., Raschle, M., Joukov, V. & Walter, J. C. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333, 84–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Somyajit, K., Subramanya, S. & Nagaraju, G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J. Biol. Chem. 287, 3366–3380 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, M. et al. The FANCJ/MutLα interaction is required for correction of the cross-link response in FA-J cells. EMBO J. 26, 3238–3249 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xie, J. et al. Targeting the FANCJ–BRCA1 interaction promotes a switch from recombination to polη-dependent bypass. Oncogene 29, 2499–2508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu, X., Chini, C. C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Guillemette, S. et al. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation. Cancer Res. 74, 932–944 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Murina, O. et al. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep. 7, 1030–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Unno, J. et al. FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep. 7, 1039–1047 (2014). References 74 and 75 show a connection between FANCD2 and CtIP, a nuclease that regulates end resection and choice of DSB repair pathway.

    Article  CAS  PubMed  Google Scholar 

  76. Yeo, J. E., Lee, E. H., Hendrickson, E. A. & Sobeck, A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum. Mol. Genet. 23, 3695–3705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roques, C. et al. MRE11–RAD50–NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO J. 28, 2400–2413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karanja, K. K., Lee, E. H., Hendrickson, E. A. & Campbell, J. L. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 13, 1540–1550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karanja, K. K., Cox, S. W., Duxin, J. P., Stewart, S. A. & Campbell, J. L. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 11, 3983–3996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011). This paper uses DNA fibre analysis to show, for the first time, that BRCA2 protects stalled forks from MRE11-mediated nucleolytic degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boersma, V. et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521, 537–540 (2015). In this study, knockdown of MAD2L2 (also known as REV7 ) was found to promote synthetic viability in BRCA1-deficient cells treated with inhibitors of PARP enzymes through a mechanism dependent on DNA end resection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012). This paper presents the first evidence of a role for Fanconi anaemia proteins (most notably FANCD2) in protecting stalled replication forks from nucleolytic degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Garcia-Rubio, M. L. et al. The Fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Howlett, N. G., Taniguchi, T., Durkin, S. G., D'Andrea, A. D. & Glover, T. W. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14, 693–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Luebben, S. W., Kawabata, T., Johnson, C. S., O'Sullivan, M. G. & Shima, N. A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res. 42, 5605–5615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, Y. H. et al. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58, 323–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yan, Z. et al. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37, 865–878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M. & Costanzo, V. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17, 1305–1311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bunting, S. F. et al. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol. Cell 46, 125–135 (2012). This study demonstrates, for the first time, that BRCA1 functions in ICL repair independently of its role in promoting homologous recombination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chaudhury, I., Stroik, D. R. & Sobeck, A. FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol. Cell. Biol. 34, 3939–3954 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Raghunandan, M., Chaudhury, I., Kelich, S. L., Hanenberg, H. & Sobeck, A. FANCD2, FANCJ and BRCA2 cooperate to promote replication fork recovery independently of the Fanconi anemia core complex. Cell Cycle 14, 342–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chaudhury, I., Sareen, A., Raghunandan, M. & Sobeck, A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 41, 6444–6459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Naim, V. & Rosselli, F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11, 761–768 (2009). This paper describes a role for the Fanconi anaemia pathway in regulating chromosome segregation during cytokinesis.

    Article  CAS  PubMed  Google Scholar 

  98. Nalepa, G. et al. Fanconi anemia signaling network regulates the spindle assembly checkpoint. J. Clin. Invest. 123, 3839–3847 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haynes, B., Saadat, N., Myung, B. & Shekhar, M. P. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Mutat. Res. Rev. Mutat. Res. 763, 258–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Adamo, A. et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39, 25–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Pace, P. et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329, 219–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Howard, S. M., Yanez, D. A. & Stark, J. M. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet. 11, e1004943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ceccaldi, R., Rondinelli, B. & D'Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016). This review article describes the mechanisms of DSB repair, together with their potential interconnections.

    Article  CAS  PubMed  Google Scholar 

  104. Saberi, A. et al. RAD18 and poly(ADP-ribose) polymerase independently suppress the access of nonhomologous end joining to double-strand breaks and facilitate homologous recombination-mediated repair. Mol. Cell. Biol. 27, 2562–2571 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Renaud, E., Barascu, A. & Rosselli, F. Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucleic Acids Res. 44, 648–656 (2016). This paper describes a role for FANCD2 in TIP60-mediated accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which is thought to account for the homologous recombination deficiency that is observed in Fanconi anaemia cells.

    Article  CAS  PubMed  Google Scholar 

  106. Tang, J. et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat. Struct. Mol. Biol. 20, 317–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Nguyen, T. V., Riou, L., Aoufouchi, S. & Rosselli, F. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells. J. Exp. Med. 211, 1011–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saffi, J. et al. Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells. DNA Repair 9, 40–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Bogliolo, M. et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92, 800–806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kashiyama, K. et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92, 807–819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Manandhar, M., Boulware, K. S. & Wood, R. D. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 569, 153–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu, D. et al. Recruitment of DNA polymerase eta by FANCD2 in the early response to DNA damage. Cell Cycle 12, 803–809 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kannouche, P. & Stary, A. Xeroderma pigmentosum variant and error-prone DNA polymerases. Biochimie 85, 1123–1132 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Shen, X. et al. Recruitment of Fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol. Cell 35, 716–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pathania, S. et al. BRCA1 is required for postreplication repair after UV-induced DNA damage. Mol. Cell 44, 235–251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelsall, I. R., Langenick, J., MacKay, C., Patel, K. J. & Alpi, A. F. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS ONE 7, e36970 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Duquette, M. L. et al. CtIP is required to initiate replication-dependent interstrand crosslink repair. PLoS Genet. 8, e1003050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, X. et al. The Fanconi anemia proteins FANCD2 and FANCJ interact and regulate each other's chromatin localization. J. Biol. Chem. 289, 25774–25782 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bogliolo, M. et al. Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability. EMBO J. 26, 1340–1351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Huang, M. et al. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 39, 259–268 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shimamura, A. & Alter, B. P. Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev. 24, 101–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Neveling, K., Endt, D., Hoehn, H. & Schindler, D. Genotype-phenotype correlations in Fanconi anemia. Mutat. Res. 668, 73–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Ceccaldi, R. et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11, 36–49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Quentin, S. et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 117, e161–e170 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Rosenberg, P. S., Greene, M. H. & Alter, B. P. Cancer incidence in persons with Fanconi anemia. Blood 101, 822–826 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  130. Sawyer, S. L. et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov. 5, 135–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Meetei, A. R. et al. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 37, 958–963 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Singh, T. R. et al. Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood 114, 174–180 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, E. et al. Inactivation of Uaf1 causes defective homologous recombination and early embryonic lethality in mice. Mol. Cell. Biol. 33, 4360–4370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim, J. M. et al. Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev. Cell 16, 314–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bogliolo, M. & Surralles, J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr. Opin. Genet. Dev. 33, 32–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Lord, C. J., Tutt, A. N. & Ashworth, A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66, 455–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize for the many articles that could not be cited owing to space limitations. R.C. is a recipient of the Ovarian Cancer Research Fellowship (OCRF) and Claudia Adams Barr Program. P.S. is a recipient of a Leukaemia and Lymphoma Society (LLS) fellowship. This work was supported by a Stand Up To Cancer (SU2C) – Ovarian Cancer Research Fund-Ovarian Cancer National Alliance-National Ovarian Cancer Coalition Dream Team Translational Research Grant (grant number SU2C-AACR-DT16-15). SU2C is a program of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C. This work was also supported by grants from the U.S. National Institutes of Health (R01DK43889, R37HL052725 and P01HL048546), the Breast Cancer Research Foundation and the Fanconi Anaemia Research Fund (to A.D.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. D'Andrea.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

The Fanconi anaemia mutation database

FURTHER INFORMATION

Oregon Health & Science University FA Cell Repository

The Fanconi Anaemia Research Fund

Glossary

Nucleotide excision repair

A DNA repair mechanism that removes bulky DNA lesions induced by ultraviolet light. Germline inactivation of nucleotide excision repair genes results in severe human diseases.

Homologous recombination

A double-strand DNA break repair pathway that functions mainly in the S phase of the cell cycle and uses the sister chromatid as a template to synthesize DNA around the break. This repair process is typically error free.

Translesion synthesis

A DNA damage tolerance pathway that allows replication to bypass DNA lesions and requires switching out regular DNA polymerases for error-prone translesion polymerases. The use of translesion synthesis is thought to introduce DNA mutations throughout the genome.

Fanconi anaemia pathway

A DNA repair pathway that specifically functions in interstrand crosslink (ICL) repair. The Fanconi anaemia pathway also has various roles in addition to ICL repair, such as the stabilization of replication forks. Germline inactivation of any Fanconi anaemia gene causes the Fanconi anaemia disease, which is a cancer predisposition syndrome.

In vitro Xenopus system

An extract from Xenopus laevis frog eggs that can support DNA replication and key genome maintenance processes and is thus used for biochemical studies of these processes.

CMG complex

An 11-member eukaryotic replicative helicase comprising the ring-shaped MCM2–MCM7 hexameric core, and the accessory factors CDC45 and the GINS complex.

Xeroderma pigmentosum

A genetic disorder in which nucleotide excision repair components have been inactivated. It is characterized by a defect in repairing damage caused by ultraviolet light; as a consequence, patients with xeroderma pigmentosum are extremely sensitive to ultraviolet light and are highly predisposed to skin malignancies.

Poly(ADP-ribose) polymerase inhibitor

(PARPi). A novel class of agents that exhibit anticancer activity by inhibiting the PARP family of enzymes. As tumours with inactivated homologous recombination are extremely sensitive to PARPi, their use has recently been approved for the treatment of cancers with mutations in the breast cancer susceptibility genes BRCA1 or BRCA2.

Replication stress

Perturbations originating from endogenous or exogenous sources that can affect the proper progression and completion of DNA replication.

Dormant origins

Origins of replication that are kept silent by the checkpoint response but become necessary for the completion of DNA replication when replication fork progression is inhibited.

Under-replicated DNA

Slower or incomplete replication of certain chromosome regions. Under-replication can be the consequence of replicative stress and can generate ultra-fine DNA bridges and genomic instability.

Alternative end joining

A double-strand DNA break (DSB) repair pathway that requires microhomology around the break to process the lesion. This pathway can compensate for the loss of homologous recombination or functions as the backup pathway to non-homologous end joining for the joining of DSBs in the context of V(D)J recombination. Alternative end joining is highly mutagenic.

Non-homologous end joining

(NHEJ). A repair pathway that functions predominantly in the G0/G1 and G2 phases of the cell cycle and repairs double-strand DNA breaks by blunt end ligation independently of sequence homology.

CRISPR technology

A technique that is now commonly used worldwide for gene editing and, notably, for generating knockout systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccaldi, R., Sarangi, P. & D'Andrea, A. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17, 337–349 (2016). https://doi.org/10.1038/nrm.2016.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2016.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing