Key Points
-
The majority of human urinary stones are primarily composed of crystalline calcium salts but many other metals and nonmetals are detectable with concentrations ranging over 10 orders of magnitude
-
The contribution of elements other than calcium to the formation, recurrence or physical properties of human urinary stones is generally poorly defined
-
Over the past 50 years, 20â30 studies of elemental stone content have been published and their findings can be summarized to produce a working elementome of the human calcium-based urinary stone
-
The amount of some elements within human calcium-based urinary stones does not correlate with their normal urinary concentrations, suggesting that accumulation or other processes affect the elemental composition of stones
-
Further refinement of the elementome of calcium-based urinary stones is warranted because it is likely to reveal novel opportunities for monitoring lithogenesis and new targets for therapeutic intervention
Abstract
Urolithiasis affects around 10% of the US population with an increasing rate of prevalence, recurrence and penetrance. The causes for the formation of most urinary calculi remain poorly understood, but obtaining the chemical composition of these stones might help identify key aspects of this process and new targets for treatment. The majority of urinary stones are composed of calcium that is complexed in a crystalline matrix with organic and inorganic components. Surprisingly, mitigation of urolithiasis risk by altering calcium homeostasis has not been very effective. Thus, studies to identify other therapeutic stone-specific targets, using proteomics, metabolomics and microscopy techniques, have been conducted, revealing a high level of complexity. The data suggest that numerous metals other than calcium and many nonmetals are present within calculi at measurable levels and several have distinct distribution patterns. Manipulation of the levels of some of these elemental components of calcium-based stones has resulted in clinically beneficial changes in stone chemistry and rate of stone formation. The elementomeâthe full spectrum of elemental contentâof calcium-based urinary calculi is emerging as a new concept in stone research that continues to provide important insights for improved understanding and prevention of urinary stone disease.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Ramello, A., Vitale, C. & Marangella, M. Epidemiology of nephrolithiasis. J. Nephrol. 13 (Suppl. 3), S45âS50 (2000).
Pearle, M. S. et al. Medical management of kidney stones: AUA guideline. J. Urol. 192, 316â324 (2014).
Romero, V., Akpinar, H. & Assimos, D. G. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 12, e86âe96 (2010).
Pearle, M. S., Calhoun, E. A., Curhan, G. C. & Urologic Diseases of America Project. Urologic Diseases in America Project: urolithiasis. J. Urol. 173, 848â857 (2005).
Dwyer, M. E. et al. Temporal trends in incidence of kidney stones among children: a 25-year population based study. J. Urol. 188, 247â252 (2012).
Scales, C. D. Jr, Smith, A. C., Hanley, J. M., Saigal, C. S. & Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160â165 (2012).
Stamatelou, K. K., Francis, M. E., Jones, C. A., Nyberg, L. M. & Curhan, G. C. Time trends in reported prevalence of kidney stones in the United States: 1976â1994. Kidney Int. 63, 1817â1823 (2003).
West, B. et al. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988â1994. Am. J. Kidney Dis. 51, 741â747 (2008).
Ohta, Y. & Suzuki, K. T. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol. Appl. Pharmacol. 226, 169â177 (2008).
Sutor, D. J. & Scheidt, S. Identification standards for human urinary calculus components, using crystallographic methods. Br. J. Urol. 40, 22â28 (1968).
Lewandowski, S. & Rodgers, A. L. Idiopathic calcium oxalate urolithiasis: risk factors and conservative treatment. Clin. Chim. Acta 345, 17â34 (2004).
Evan, A. P., Coe, F. L., Lingeman, J. E. & Worcester, E. Insights on the pathology of kidney stone formation. Urol. Res. 33, 383â389 (2005).
Fleisch, H. Inhibitors and promoters of stone formation. Kidney Int. 13, 361â371 (1978).
Khan, S. R. & Kok, D. J. Modulators of urinary stone formation. Front. Biosci. 9, 1450â1482 (2004).
SÅojewski, M. Major and trace elements in lithogenesis. Cent. European J. Urol. 64, 58â61 (2011).
Bird, E. D. & Thomas, W. C. Jr. Effect of various metals on mineralization in vitro. Proc. Soc. Exp. Biol. Med. 112, 640â643 (1963).
Caruso, J. A. & Montes-Bayon, M. Elemental speciation studiesânew directions for trace metal analysis. Ecotoxicol. Environ. Saf. 56, 148â163 (2003).
Meyer, J. L. & Angino, E. E. The role of trace metals in calcium urolithiasis. Invest. Urol. 14, 347â350 (1977).
Muñoz, J. A. & Valiente, M. Effects of trace metals on the inhibition of calcium oxalate crystallization. Urol. Res. 33, 267â272 (2005).
Nagy, Z., Szabo, E. & Kelenhei, M. Spectrum analysis of kidney calculi for metal trace elements [German]. Z. Urol. 56, 186â190 (1963).
Richet, G. Nephrolithiasis at the turn of the 18th to 19th centuries: biochemical disturbances. A genuine cascade giving rise to clinical chemistry. Am. J. Nephrol. 22, 254â259 (2002).
Rarback, H. et al. Elemental analysis using differential absorption techniques. Biol. Trace Elem. Res. 13, 103â113 (1987).
Morrison, G. H. & Risby, T. H. Elemental trace analysis of biological materials. Crit. Rev. Anal. Chem. 8, 287â320 (1979).
Parsons, P. J. & Barbosa, F. Jr. Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim. Acta Part B At. Spectros. 62, 992â1003 (2007).
Thongboonkerd, V. Proteomics and kidney stone disease. Contrib. Nephrol. 160, 142â158 (2008).
Vezzoli, G., Terranegra, A., Arcidiacono, T. & Soldati, L. Genetics and calcium nephrolithiasis. Kidney Int. 80, 587â593 (2011).
Gambaro, G. et al. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am. J. Kidney Dis. 44, 963â986 (2004).
Smith, K. S. & Huyck, H. L. An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals in The environmental geochemistry of mineral deposits: Part A, Processes, techniques, and health issues (eds Plumlee, G. S., Logsdon, M. J. & Filipek, L. F.) 6A, 29â70 (Society of Economic Geologists, 1999).
Hamadeh, M. J., Schiffrin, A. & Hoffer, L. J. Sulfate production depicts fed-state adaptation to protein restriction in humans. Am. J. Physiol. Endocrinol. Metab. 281, E341âE348 (2001).
Magee, E. A., Curno, R., Edmond, L. M. & Cummings, J. H. Contribution of dietary protein and inorganic sulfur to urinary sulfate: toward a biomarker of inorganic sulfur intake. Am. J. Clin. Nutr. 80, 137â142 (2004).
Heilberg, I. P. & Goldfarb, D. S. Optimum nutrition for kidney stone disease. Adv. Chronic Kidney Dis. 20, 165â174 (2013).
Reddy, S. T., Wang, C. Y., Sakhaee, K., Brinkley, L. & Pak, C. Y. Effect of low-carbohydrate high-protein diets on acidâbase balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 40, 265â274 (2002).
Tschöpe, W. & Ritz, E. Sulfur-containing amino acids are a major determinant of urinary calcium. Miner. Electrolyte Metab. 11, 137â139 (1985).
Rodgers, A. et al. Sulfate but not thiosulfate reduces calculated and measured urinary ionized calcium and supersaturation: implications for the treatment of calcium renal stones. PLoS ONE 9, e103602 (2014).
Faragalla, F. F. & Gershoff, S. N. Interelations among magnesium, vitamin B6, sulfur and phosphorus in the formation of kidney stones in the rat. J. Nutr. 81, 60â66 (1963).
White, R. H. Occurrence of S-methyl thioesters in urines of humans after they have eaten asparagus. Science 189, 810â811 (1975).
Borghi, L. et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346, 77â84 (2002).
Romani, A. M. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 512, 1â23 (2011).
Kohri, K., Garside, J. & Blacklock, N. J. The role of magnesium in calcium oxalate urolithiasis. Br. J. Urol. 61, 107â115 (1988).
Oka, T., Yoshioka, T., Koide, T., Takaha, M. & Sonoda, T. Role of magnesium in the growth of calcium oxalate monohydrate and calcium oxalate dihydrate crystals. Urol. Int. 42, 89â93 (1987).
Kato, Y. et al. Changes in urinary parameters after oral administration of potassium-sodium citrate and magnesium oxide to prevent urolithiasis. Urology 63, 7â11; discussion 11â12 (2004).
Durak, I. et al. Iron, copper, cadmium, zinc and magnesium contents of urinary tract stones and hair from men with stone disease. Eur. Urol. 17, 243â247 (1990).
Kasaoka, S., Kitano, T., Hanai, M., Futatsuka, M. & Esashi, T. Effect of dietary magnesium level on nephrocalcinosis and growth in rats. J. Nutr. Sci. Vitaminol. (Tokyo) 44, 503â514 (1998).
Schmiedl, A. & Schwille, P. O. Magnesium status in idiopathic calcium urolithiasisâan orientational study in younger males. Eur. J. Clin. Chem. Clin. Biochem. 34, 393â400 (1996).
Schwartz, B. F., Bruce, J., Leslie, S. & Stoller, M. L. Rethinking the role of urinary magnesium in calcium urolithiasis. J. Endourol. 15, 233â235 (2001).
Atakan, I. H. et al. Serum, urinary and stone zinc, iron, magnesium and copper levels in idiopathic calcium oxalate stone patients. Int. Urol. Nephrol. 39, 351â356 (2007).
Oreopoulos, D. G., Soyannwo, M. A. & McGeown, M. G. Magnesiumâcalcium ratio in urine of patients with renal stones. Lancet 2, 420â422 (1968).
Riley, J. M., Kim, H., Averch, T. D. & Kim, H. J. Effect of magnesium on calcium and oxalate ion binding. J. Endourol. 27, 1487â1492 (2013).
Turgut, M. et al. The concentration of Zn, Mg and Mn in calcium oxalate monohydrate stones appears to interfere with their fragility in ESWL therapy. Urol. Res. 36, 31â38 (2008).
Ettinger, B., Citron, J. T., Livermore, B. & Dolman, L. I. Chlorthalidone reduces calcium oxalate calculous recurrence but magnesium hydroxide does not. J. Urol. 139, 679â684 (1988).
Johansson, G. et al. Effects of magnesium hydroxide in renal stone disease. J. Am. Coll. Nutr. 1, 179â185 (1982).
Massey, L. Magnesium therapy for nephrolithiasis. Magnes. Res. 18, 123â126 (2005).
Whelton, P. K. & He, J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 25, 75â79 (2014).
Coe, F. L., Parks, J. H. & Asplin, J. R. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 327, 1141â1152 (1992).
Curhan, G. C., Willett, W. C., Speizer, F. E. & Stampfer, M. J. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 59, 2290â2298 (2001).
Curhan, G. C., Willett, W. C., Speizer, F. E., Spiegelman, D. & Stampfer, M. J. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann. Intern. Med. 126, 497â504 (1997).
Meschi, T. et al. Dietary habits in women with recurrent idiopathic calcium nephrolithiasis. J. Transl. Med. 10, 63 (2012).
Al Zahrani, H., Norman, R. W., Thompson, C. & Weerasinghe, S. The dietary habits of idiopathic calcium stone-formers and normal control subjects. BJU Int. 85, 616â620 (2000).
Massey, L. K. & Whiting, S. J. Dietary salt, urinary calcium, and kidney stone risk. Nutr. Rev. 53, 131â139 (1995).
Muldowney, F. P., Freaney, R. & Moloney, M. F. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 22, 292â296 (1982).
Burtis, W. J., Gay, L., Insogna, K. L., Ellison, A. & Broadus, A. E. Dietary hypercalciuria in patients with calcium oxalate kidney stones. Am. J. Clin. Nutr. 60, 424â429 (1994).
Silver, J., Rubinger, D., Friedlaender, M. M. & Popovtzer, M. M. Sodium-dependent idiopathic hypercalciuria in renal-stone formers. Lancet 2, 484â486 (1983).
Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 2253â2259 (2009).
Nouvenne, A. et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am. J. Clin. Nutr. 91, 565â570 (2010).
Stoller, M. L., Chi, T., Eisner, B. H., Shami, G. & Gentle, D. L. Changes in urinary stone risk factors in hypocitraturic calcium oxalate stone formers treated with dietary sodium supplementation. J. Urol. 181, 1140â1144 (2009).
Friedman, P. A. & Gesek, F. A. Calcium transport in renal epithelial cells. Am. J. Physiol. 264, F181âF198 (1993).
Cirillo, M., Laurenzi, M., Panarelli, W. & Stamler, J. Urinary sodium to potassium ratio and urinary stone disease. The Gubbio Population Study Research Group. Kidney Int. 46, 1133â1139 (1994).
Curhan, G. C., Willett, W. C., Rimm, E. B. & Stampfer, M. J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328, 833â838 (1993).
Curhan, G. C. Dietary calcium, dietary protein, and kidney stone formation. Miner. Electrolyte Metab. 23, 261â264 (1997).
Hirvonen, T., Pietinen, P., Virtanen, M., Albanes, D. & Virtamo, J. Nutrient intake and use of beverages and the risk of kidney stones among male smokers. Am. J. Epidemiol. 150, 187â194 (1999).
Barcelo, P., Wuhl, O., Servitge, E., Rousaud, A. & Pak, C. Y. Randomized double-blind study of potassium citrate in idiopathic hypocitraturic calcium nephrolithiasis. J. Urol. 150, 1761â1764 (1993).
Preminger, G. M., Sakhaee, K., Skurla, C. & Pak, C. Y. Prevention of recurrent calcium stone formation with potassium citrate therapy in patients with distal renal tubular acidosis. J. Urol. 134, 20â23 (1985).
King, J. C. et al. Effect of acute zinc depletion on zinc homeostasis and plasma zinc kinetics in men. Am. J. Clin. Nutr. 74, 116â124 (2001).
Wu, L. N., Genge, B. R. & Wuthier, R. E. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes. J. Inorg. Biochem. 103, 948â962 (2009).
LeGeros, R. Z., Bleiwas, C. B., Retino, M., Rohanizadeh, R. & LeGeros, J. P. Zinc effect on the in vitro formation of calcium phosphates: relevance to clinical inhibition of calculus formation. Am. J. Dent. 12, 65â71 (1999).
Fujii, E. et al. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater. 2, 69â74 (2006).
Ren, F., Xin, R., Ge, X. & Leng, Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 5, 3141â3149 (2009).
Tang, J., McFann, K. & Chonchol, M. Dietary zinc intake and kidney stone formation: evaluation of NHANES III. Am. J. Nephrol. 36, 549â553 (2012).
Turney, B. W. et al. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Epidemiol. 29, 363â369 (2014).
Komleh, K., Hada, P., Pendse, A. K. & Singh, P. P. Zinc, copper and manganese in serum, urine and stones. Int. Urol. Nephrol. 22, 113â118 (1990).
Durak, I., Kilic, Z., Sahin, A. & Akpoyraz, M. Analysis of calcium, iron, copper and zinc contents of nucleus and crust parts of urinary calculi. Urol. Res. 20, 23â26 (1992).
Gupta, A., Srivastava, D. K. & Kumar, S. Role of zinc in nephrolithiasis. J. Indian Med. Assoc. 82, 235â237 (1984).
Ozgurtas, T., Yakut, G., Gulec, M., Serdar, M. & Kutluay, T. Role of urinary zinc and copper on calcium oxalate stone formation. Urol. Int. 72, 233â236 (2004).
Chou, A. H., LeGeros, R. Z., Chen, Z. & Li, Y. Antibacterial effect of zinc phosphate mineralized guided bone regeneration membranes. Implant. Dent. 16, 89â100 (2007).
Winterbourn, C. C., Peskin, A. V. & Parsons-Mair, H. N. Thiol oxidase activity of copper, zinc superoxide dismutase. J. Biol. Chem. 277, 1906â1911 (2002).
Storrie, H. & Stupp, S. I. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials 26, 5492â5499 (2005).
Hadley, K. B., Newman, S. M. & Hunt, J. R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 21, 297â303 (2010).
Cerovic, A. et al. Effects of zinc on the mineralization of bone nodules from human osteoblast-like cells. Biol. Trace Elem. Res. 116, 61â71 (2007).
Yang, Y. J. et al. Dietary zinc intake is inversely related to subclinical atherosclerosis measured by carotid intima-media thickness. Br. J. Nutr. 104, 1202â1211 (2010).
Beattie, J. H. & Kwun, I. S. Is zinc deficiency a risk factor for atherosclerosis? Br. J. Nutr. 91, 177â181 (2004).
Ma, X. & Ellis, D. E. Initial stages of hydration and Zn substitution/occupation on hydroxyapatite (0001) surfaces. Biomaterials 29, 257â265 (2008).
Carpentier, X. et al. High Zn content of Randall's plaque: a µ-X-ray fluorescence investigation. J. Trace Elem. Med. Biol. 25, 160â165 (2011).
Kalicanin, B. M. & Nikolic´, R. S. Potentiometric stripping analysis of zinc and copper in human teeth and dental materials. J. Trace Elem. Med. Biol. 22, 93â99 (2008).
Chi, T. et al. A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS ONE 10, e0124150 (2015).
Greger, J. L. & Sutherland, J. E. Aluminum exposure and metabolism. Crit. Rev. Clin. Lab. Sci. 34, 439â474 (1997).
SÅojewski, M. et al. Microelements in stones, urine, and hair of stone formers: a new key to the puzzle of lithogenesis? Biol. Trace Elem. Res. 137, 301â316 (2010).
Pors Nielsen, S. The biological role of strontium. Bone 35, 583â588 (2004).
Li, Z. Y. et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28, 1452â1460 (2007).
Bazin, D. et al. The status of strontium in biological apatites: an XANES/EXAFS investigation. J. Synchrotron Radiat. 21, 136â142 (2014).
Bazin, D. et al. The status of strontium in biological apatites: an XANES investigation. J. Synchrotron Radiat. 18, 912â918 (2011).
Blaschko, S. D. et al. Strontium substitution for calcium in lithogenesis. J. Urol. 189, 735â739 (2013).
Vezzoli, G. et al. Strontium absorption and excretion in normocalciuric subjects: relation to calcium metabolism. Clin. Chem. 44, 586â590 (1998).
Ammann, P., Badoud, I., Barraud, S., Dayer, R. & Rizzoli, R. Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J. Bone Miner. Res. 22, 1419â1425 (2007).
Ciftçioglu, N., Bjorklund, M., Kuorikoski, K., Bergström, K. & Kajander, E. O. Nanobacteria: an infectious cause for kidney stone formation. Kidney Int. 56, 1893â1898 (1999).
Wessing, A. & Zierold, K. Metal-salt feeding causes alterations in concretions in Drosophila larval Malpighian tubules as revealed by X-ray microanalysis. J. Insect Physiol. 38, 623â632 (1992).
Reginster, J. Y. et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab. 90, 2816â2822 (2005).
Lieu, P. T., Heiskala, M., Peterson, P. A. & Yang, Y. The roles of iron in health and disease. Mol. Aspects Med. 22, 1â87 (2001).
Meyer, J. L. & Thomas, W. C. Jr. Trace metal-citric acid complexes as inhibitors of calcification and crystal growth. II. Effects of Fe(III), Cr(III) and Al(III) complexes on calcium oxalate crystal growth. J. Urol. 128, 1376â1378 (1982).
Meyer, J. L. & Thomas, W. C. Jr. Trace metal-citric acid complexes as inhibitors of calcification and crystal growth. I. Effects of Fe(III), Cr(III) and Al(III) complexes on calcium phosphate crystal growth. J. Urol. 128, 1372â1375 (1982).
Bazin, D., Chevallier, P., Matzen, G., Jungers, P. & Daudon, M. Heavy elements in urinary stones. Urol. Res. 35, 179â184 (2007).
Joost, J. & Tessadri, R. Trace element investigations in kidney stone patients. Eur. Urol. 13, 264â270 (1987).
Küpeli, S. et al. Efficiency of extracorporeal shockwave lithotripsy on calcium-oxalate stones: role of copper, iron, magnesium and zinc concentrations on disintegration of the stones. Eur. Urol. 23, 409â412 (1993).
Naghii, M. R. & Samman, S. The role of boron in nutrition and metabolism. Prog. Food Nutr. Sci. 17, 331â349 (1993).
Benderdour, M., Bui-Van, T., Dicko, A. & Belleville, F. In vivo and in vitro effects of boron and boronated compounds. J. Trace Elem. Med. Biol. 12, 2â7 (1998).
Hunt, C. D. Dietary boron: progress in establishing essential roles in human physiology. J. Trace Elem. Med. Biol. 26, 157â160 (2012).
Nielsen, F. H. Update on human health effects of boron. J. Trace Elem. Med. Biol. 28, 383â387 (2014).
Hunt, C. D., Herbel, J. L. & Nielsen, F. H. Metabolic responses of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am. J. Clin. Nutr. 65, 803â813 (1997).
Naghii, M. R., Einollahi, B. & Rostami, Z. Preliminary evidence hints at a protective role for boron in urolithiasis. J. Altern. Complement. Med. 18, 207â209 (2012).
Naghii, M. R. Boron and antioxidants complex: a new concept for the treatment of kidney stones without rigorous pain. Endocr. Regul. 48, 120â125 (2014).
Guidotti, T. L. Toxicity and poisoning: the example of lead. Arch. Environ. Occup. Health 69, 64â65 (2014).
SanÃn, L. H., González-CossÃo, T., Romieu, I. & Hernández-Avila, M. Accumulation of lead in bone and its effects on health [Spanish]. Salud Publica Mex. 40, 359â368 (1998).
Turnlund, J. R. Human whole-body copper metabolism. Am. J. Clin. Nutr. 67, 960Sâ964S (1998).
Tawashi, R. & Cousineau, M. Growth retardation of weddellite (calcium oxalate dihydrate) by sodium copper chlorophyllin. Invest. Urol. 18, 86â89 (1980).
Tawashi, R., Cousineau, M. & Denis, G. Crystallisation of calcium oxalate dihydrate in normal urine in presence of sodium copper chlorophyllin. Urol. Res. 10, 173â176 (1982).
Desjardins, A. & Tawashi, R. Growth retardation of calcium oxalate by sodium copper chlorophyllin. Eur. Urol. 4, 294â297 (1978).
Tawashi, R., Cousineau, M. & Sharkawi, M. Effect of sodium copper chlorophyllin on the formation of calcium oxalate crystals in rat kidney. Invest. Urol. 18, 90â92 (1980).
Sarkar, B. Nickel metabolism. IARC Sci. Publ. 53, 367â384 (1984).
Hofbauer, J. et al. Trace elements and urinary stone formation: new aspects of the pathological mechanism of urinary stone formation. J. Urol. 145, 93â96 (1991).
Nielsen, F. H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 28, 379â382 (2014).
Carlisle, E. M. The nutritional essentiality of silicon. Nutr. Rev. 40, 193â198 (1982).
Najda, J., Gmin´ski, J., Drózdz, M. & Danch, A. The action of excessive, inorganic silicon (Si) on the mineral metabolism of calcium (Ca) and magnesium (Mg). Biol. Trace Elem. Res. 37, 107â114 (1993).
Haddad, F. S. & Kouyoumdjian, A. Silica stones in humans. Urol. Int. 41, 70â76 (1986).
May, M. et al. Silica-containing urinary stonesâclinical issues to keep in mind [German]. Urologe A 44, 68â72 (2005).
Zhang, X. et al. The role of lithium carbonate and lithium citrate in regulating urinary citrate level and preventing nephrolithiasis. Int. J. Biomed. Sci. 5, 215â222 (2009).
Mertz, W. Chromium occurrence and function in biological systems. Physiol. Rev. 49, 163â239 (1969).
Anderson, R. A. et al. Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of Cr excretion with selected clinical parameters. J. Nutr. 113, 276â281 (1983).
Lim, T. H., Sargent, T. 3rd & Kusubov, N. Kinetics of trace element chromium(III) in the human body. Am. J. Physiol. 244, R445âR454 (1983).
Spinedi, A., Pacini, L., Luly, P., Lombardi, U. & Nisticò, G. Rubidium shows effects different from lithium on phosphatidylinositol metabolism in a cell line of human neuroblastoma. Funct. Neurol. 7, 305â308 (1992).
Aschner, J. L. & Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 26, 353â362 (2005).
Leach, R. M. Jr & Gay, C. V. Role of epiphyseal cartilage in endochondral bone formation. J. Nutr. 117, 784â790 (1987).
Ponnapakkam, T., Iszard, M. & Henry-Sam, G. Effects of oral administration of manganese on the kidneys and urinary bladder of Sprague-Dawley rats. Int. J. Toxicol. 22, 227â232 (2003).
Trinchieri, A., Mandressi, A., Luongo, P., Longo, G. & Pisani, E. The influence of diet on urinary risk factors for stones in healthy subjects and idiopathic renal calcium stone formers. Br. J. Urol. 67, 230â236 (1991).
French, R. J. & Jones, P. J. Role of vanadium in nutrition: metabolism, essentiality and dietary considerations. Life Sci. 52, 339â346 (1993).
Heinrich, H. C. & Gabbe, E. E. Metabolic behavior of inorganic cobalt and of vitamin B-12 as well as vitamin B-12 coenzyme structure of organically bound cobalt in mammals [German]. Z. Naturforsch. B 19, 1032â1042 (1964).
Sakly, R., Chaouch, A., el Hani, A. & Najjar, M. F. Effects of intraperitoneally administered vitamin E and selenium on calcium oxalate renal stone formation: experimental study in rat. Ann. Urol. (Paris) 37, 47â50 (2003).
Santhosh Kumar, M. & Selvam, R. Supplementation of vitamin E and selenium prevents hyperoxaluria in experimental urolithic rats. J. Nutr. Biochem. 14, 306â313 (2003).
Lahme, S., Feil, G., Strohmaier, W. L., Bichler, K. H. & Stenzl, A. Renal tubular alteration by crystalluria in stone diseaseâan experimental study by means of MDCK cells. Urol. Int. 72, 244â251 (2004).
Mendel, R. R. Metabolism of molybdenum. Met. Ions Life Sci. 12, 503â528 (2013).
Karring, M., Pohjanvirta, R., Rahko, T. & Korpela, H. The influence of dietary molybdenum and copper supplementation on the contents of serum uric acid and some trace elements in cocks. Acta Vet. Scand. 22, 289â295 (1981).
Deosthale, Y. G. & Gopalan, C. The effect of molybdenum levels in sorghum (Sorghum vulgare Pers.) on uric acid and copper excretion in man. Br. J. Nutr. 31, 351â355 (1974).
Shen, S., Li, X. F., Cullen, W. R., Weinfeld, M. & Le, X. C. Arsenic binding to proteins. Chem. Rev. 113, 7769â7792 (2013).
Uthus, E. O. Arsenic essentiality: a role affecting methionine metabolism. J. Trace Elem. Exper. Med. 16, 345â355 (2003).
Nawrot, T. S. et al. Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23, 769â782 (2010).
Järup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. 17 (Suppl. 2), 35â39 (2002).
Friberg, L. Health hazards in the manufacture of alkaline accumulators with special reference to chronic cadmium poisoning; a clinical and experimental study. Acta Med. Scand. Suppl. 240, 1â124 (1950).
Elinder, C. G., Edling, C., Lindberg, E., KÃ¥gedal, B. & Vesterberg, O. Assessment of renal function in workers previously exposed to cadmium. Br. J. Ind. Med. 42, 754â760 (1985).
Scott, R., Paterson, P. J., Burns, R., Fell, G. S. & Ottoway, J. M. The effects of treatment on the hypercalciuria of chronic cadmium poisoning. Urol. Res. 7, 285â289 (1979).
Ferraro, P. M. et al. Cadmium exposure and kidney stone formation in the general populationâan analysis of the National Health and Nutrition Examination Survey III data. J. Endourol. 25, 875â880 (2011).
Swaddiwudhipong, W. et al. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ. Res. 112, 194â198 (2012).
Kaewnate, Y. et al. Association of elevated urinary cadmium with urinary stone, hypercalciuria and renal tubular dysfunction in the population of cadmium-contaminated area. Bull. Environ. Contam. Toxicol. 89, 1120â1124 (2012).
Thomas, L. D., Elinder, C. G., Tiselius, H. G., Wolk, A. & Akesson, A. Dietary cadmium exposure and kidney stone incidence: a population-based prospective cohort study of men & women. Environ. Int. 59, 148â151 (2013).
Chen, X. et al. Effects of lead and cadmium co-exposure on bone mineral density in a Chinese population. Bone 63, 76â80 (2014).
Bhattacharyya, M. H. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol. Appl. Pharmacol. 238, 258â265 (2009).
Perk, H., Serel, T. A., KosËar, A., Deniz, N. & Sayin, A. Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi. Urol. Int. 68, 286â290 (2002).
Kappas, A. & Maines, M. D. Tin: a potent inducer of heme oxygenase in kidney. Science 192, 60â62 (1976).
Esposito, M. et al. Plasma and tissue levels of some lanthanide elements in malignant and non-malignant human tissues. Sci. Total Environ. 50, 55â63 (1986).
Sojka, B. et al. Hydrophobic sodium fluoride-based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes. J. Appl. Toxicol. 34, 1220â1225 (2014).
de Freitas, D., Donne, R. L. & Hutchison, A. J. Lanthanum carbonate--a first line phosphate binder? Semin. Dial. 20, 325â328 (2007).
Barton Pai, A., Conner, T. A. & McQuade, C. R. Therapeutic use of the phosphate binder lanthanum carbonate. Expert Opin. Drug Metab. Toxicol. 5, 71â81 (2009).
Guo, H., Zhang, X., Tang, S. & Zhang, S. Effects and safety of lanthanum carbonate in end stage renal disease patients with hyperphosphatemia: a meta-analysisâsystem review of lanthanum carbonate. Ren. Fail. 35, 1455â1464 (2013).
Cameron, M. A., Sakhaee, K. & Moe, O. W. Nephrolithiasis in children. Pediatr. Nephrol. 20, 1587â1592 (2005).
Tandon, L., Iyengar, G. V. & Parr, R. M. A review of radiologically important trace elements in human bones. Appl. Radiat. Isot. 49, 903â910 (1998).
Tietz, N. W. Clinical guide to laboratory tests (Saunders, 1995).
Moshfegh, A., Goldman, J. & Cleveland, L. What we eat in America, NHANES 2001â2002: usual nutrient intakes from food compared to dietary reference intakes. US Department of Agriculture, Agriculture Research Service [online], (2005).
Briefel, R. R. et al. Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988â1994. J. Nutr. 130, 1367Sâ1373S (2000).
Abdel-Gawad, M., Ali-El-Dein, B., Mehta, S., Al-Kohlany, K. M. & Elsobky, E. A correlation study between macro- and micro-analysis of pediatric urinary calculi. J. Pediatr. Urol. 10, 1267â1272 (2014).
Ohta, N. Studies on inorganic constituents in biological materials.âOn the inorganic constituents in human stones. Bull. Chem. Soc. Jpn 30, 833â841 (1957).
Levinson, A. A. et al. Trace elements in kidney stones from three areas in the United States. Invest. Urol. 15, 270â274 (1978).
Wandt, M. A., Pougnet, M. A. & Rodgers, A. L. Determination of calcium, magnesium and phosphorus in human stones by inductively coupled plasma atomic-emission spectroscopy. Analyst 109, 1071â1074 (1984).
Durak, I., Yasar, A., Yurtarslani, Z., Akpoyraz, M. & Tasman, S. Analysis of magnesium and trace elements in urinary calculi by atomic absorption spectrophotometry. Br. J. Urol. 62, 203â205 (1988).
Wandt, M. A. & Underhill, L. G. Covariance biplot analysis of trace element concentrations in urinary stones. Br. J. Urol. 61, 474â481 (1988).
Durak, I., Akpoyraz, M. & Sahin, A. Sodium, potassium and chloride concentrations in the inner nucleus and outer crust parts of urinary tract calculi. Int. Urol. Nephrol. 23, 221â226 (1991).
Höbarth, K., Koeberl, C. & Hofbauer, J. Rare-earth elements in urinary calculi. Urol. Res. 21, 261â264 (1993).
Fang, X., Ahmad, S. R., Mayo, M. & Iqbal, S. Elemental analysis of urinary calculi by laser induced plasma spectroscopy. Lasers Med. Sci. 20, 132â137 (2005).
Abboud, I. A. Concentration effect of trace metals in Jordanian patients of urinary calculi. Environ. Geochem. Health 30, 11â20 (2008).
Giannossi, M. L., Summa, V. & Mongelli, G. Trace element investigations in urinary stones: a preliminary pilot case in Basilicata (Southern Italy). J. Trace Elem. Med. Biol. 27, 91â97 (2013).
Keshavarzi, B. et al. Trace elements in urinary stones: a preliminary investigation in Fars province, Iran. Environ. Geochem. Health 37, 377â389 (2015).
Acknowledgements
K.R. and D.W.K. contributed equally to this manuscript. The authors' research is supported by the NIH NIDDK RFA-DK-12-003: Planning Centers for Interdisciplinary Research in Benign Urology (IR-BU)(P20).
Author information
Authors and Affiliations
Contributions
K.R. and D.W.K. researched data for the article. K.R., D.W.K. and M.L.S. wrote the article. All authors contributed to discussion of the content and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Ramaswamy, K., Killilea, D., Kapahi, P. et al. The elementome of calcium-based urinary stones and its role in urolithiasis. Nat Rev Urol 12, 543â557 (2015). https://doi.org/10.1038/nrurol.2015.208
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrurol.2015.208