Abstract
LINE-1s, or L1s, are highly abundant retrotransposons comprising 17% of the human genome. Most L1s are retrotransposition defective; nonetheless, there are â¼100 full-length L1s potentially capable of retrotransposition in the diploid genome. L1 retrotransposition may be detrimental to the host and thus needs to be controlled. Previous studies have identified sense and antisense promoters in the 5â² UTR of full-length human L1. Here we show that the resulting bidirectional transcripts can be processed to small interfering RNAs (siRNAs) that suppress retrotransposition by an RNA interference (RNAi) mechanism. We thus provide evidence that RNAi triggered by antisense transcripts may modulate human L1 retrotransposition efficiently and economically. L1-specific siRNAs are among the first natural siRNAs reported in mammalian systems. This work may contribute to understanding the regulatory role of abundant antisense transcripts in eukaryotic genomes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860â921 (2001).
Ostertag, E.M. & Kazazian, H.H., Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501â538 (2001).
Kazazian, H.H., Jr. Mobile elements: drivers of genome evolution. Science 303, 1626â1632 (2004).
Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429â1439 (2001).
Kulpa, D.A. & Moran, J.V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13, 655â660 (2006).
Hohjoh, H. & Singer, M.F. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16, 6034â6043 (1997).
Martin, S.L. & Bushman, F.D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467â475 (2001).
Feng, Q., Moran, J.V., Kazazian, H.H., Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905â916 (1996).
Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917â927 (1996).
Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808â1810 (1991).
Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595â605 (1993).
Moran, J.V., DeBerardinis, R.J. & Kazazian, H.H., Jr. Exon shuffling by L1 retrotransposition. Science 283, 1530â1534 (1999).
Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159â165 (2002).
Boissinot, S., Entezam, A. & Furano, A.V. Selection against deleterious LINE-1-containing loci in the human lineage. Mol. Biol. Evol. 18, 926â935 (2001).
Bayne, E.H. & Allshire, R.C. RNA-directed transcriptional gene silencing in mammals. Trends Genet. 21, 370â373 (2005).
Kim, V.N. Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1â15 (2005).
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806â811 (1998).
Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25â33 (2000).
Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363â366 (2001).
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563â574 (2002).
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471â476 (2004).
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123â132 (1999).
Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. & Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133â141 (1999).
Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310â314 (2003).
Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269, 276â285 (2004).
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489â501 (2005).
Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718â6729 (1990).
Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973â1985 (2001).
Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628â634 (2002).
Athanikar, J.N., Badge, R.M. & Moran, J.V.A. YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32, 3846â3855 (2004).
Lavie, L., Maldener, E., Brouha, B., Meese, E.U. & Mayer, J. The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res. 14, 2253â2260 (2004).
Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607â620 (2005).
Ostertag, E.M., Prak, E.T., DeBerardinis, R.J., Moran, J.V. & Kazazian, H.H., Jr. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res. 28, 1418â1423 (2000).
Tchenio, T., Casella, J.F. & Heidmann, T. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28, 411â415 (2000).
Yang, N., Zhang, L., Zhang, Y. & Kazazian, H.H., Jr. An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929â4940 (2003).
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564â1566 (2005).
Weis, L. & Reinberg, D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol. Cell. Biol. 17, 2973â2984 (1997).
Parks, C.L. & Shenk, T. The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J. Biol. Chem. 271, 4417â4430 (1996).
Soifer, H.S., Zaragoza, A., Peyvan, M., Behlke, M.A. & Rossi, J.J. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33, 846â856 (2005).
Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215â217 (2003).
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437â1441 (2004).
Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res. 16, 78â87 (2006).
Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567â1569 (2005).
Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340â1345 (2003).
Robb, G.B., Brown, K.M., Khurana, J. & Rana, T.M. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol. 12, 133â137 (2005).
Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494â498 (2001).
Bourc'his, D. & Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96â99 (2004).
Hata, K. & Sakaki, Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189, 227â234 (1997).
Yu, F., Zingler, N., Schumann, G. & Stratling, W.H. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 29, 4493â4501 (2001).
Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363â366 (2003).
Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268â274 (2004).
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732â1743 (2006).
Yang, N., Zhang, L. & Kazazian, H.H., Jr. L1 retrotransposon-mediated stable gene silencing. Nucleic Acids Res. 33, e57 (2005).
Yu, J., Li, Y., Ishizuka, T., Guenther, M.G. & Lazar, M.A.A. SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 22, 3403â3410 (2003).
Acknowledgements
We thank Z. Mourelatos, P. Sniegowski, S. Liebhaber and J. Mayer for helpful discussion and technical advice and D. Babushok and J. Goodier for critical reading of the manuscript. This work was supported by US National Institutes of Health grant GM 045398.
Author information
Authors and Affiliations
Contributions
N.Y. contributed to the concept, performed the experiments, analyzed the data and wrote the manuscript. H.H.K. contributed to the concept, analyzed the data and revised the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Yang, N., Kazazian, H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13, 763â771 (2006). https://doi.org/10.1038/nsmb1141
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb1141