Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Claudin-1/4 as directly target gene of HIF-1α can feedback regulating HIF-1α by PI3K-AKT-mTOR and impact the proliferation of esophageal squamous cell though Rho GTPase and p-JNK pathway

Abstract

Immunohistochemical microarray comprising 80 patients with esophageal squamous cell carcinoma (ESCC) and discovered that the expression of CLDN1 and CLDN4 were significantly higher in cancer tissues compared to para-cancerous tissues. Furthermore, CLDN4 significantly affected the overall survival of cancer patients. When two ESCC cell lines (TE1, KYSE410) were exposed to hypoxia (0.1% O2), CLDN1/4 was shown to influence the occurrence and development of esophageal cancer. Compared with the control culture group, the cancer cells cultured under hypoxic conditions exhibited obvious changes in CLDN1 and CLDN4 expression at both the mRNA and protein levels. Through genetic intervention and Chip, we found that HIF-1α could directly regulate the expression of CLDN1 and CLDN4 in cancer cells. Hypoxia can affect the proliferation and apoptosis of cancer cells by regulating the PI3K-Akt-mTOR pathway. Molecular analysis further revealed that CLDN1 and CLDN4 can participate in the regulation process and had a feedback regulatory effect on HIF-1α expression in cancer cells. In vitro cellular experiments and vivo experiments in nude mice further revealed that changes in CLDN4 expression in cancer cells could affect the proliferation of cancer cells via regulation of Rho GTP and p-JNK pathway. Whether CLDN4 can be target for the treatment of ESCC needs further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CLDN1/4 expression analysis in ESCC patients.
Fig. 2: 2 cancer cell lines were treated with 0.1% O2.
Fig. 3: HIF-1α can directly regulate the CLDN1/4 protein expression in ESCC cell lines.
Fig. 4: Effect of hypoxic culture on cell apoptosis of cancer cells.
Fig. 5: Interfering with the expression of CLDN1/4 in cancer cells can affect the expression of p-AKT and mTOR proteins and feedback regulate HIF-1α in normoxia condition.
Fig. 6: Effect of hypoxic culture on cell proliferation and cell viability of cancer cells.
Fig. 7: CLDN1 and CLDN4 affect the proliferation of cancer cells though Rho GTPase and p-JNK pathway.
Fig. 8: CLDN1 and CLDN4 can affect the proliferation of cancer cells in vivo experiment.

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24:2137–50.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  3. Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  4. Freedman ND, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am J Epidemiol. 2007;165:1424–33.

    Article  PubMed  Google Scholar 

  5. Zendehdel K, et al. Risk of gastroesophageal cancer among smokers and users of Scandinavian moist snuff. Int J Cancer. 2008;122:1095–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ishiguro S, et al. Effect of alcohol consumption, cigarette smoking and flushing response on esophageal cancer risk: a population-based cohort study (JPHC study). Cancer Lett. 2009;275:240–6.

    Article  CAS  PubMed  Google Scholar 

  7. Maghsudlu M, Farashahi YE. Heat-induced inflammation and its role in esophageal cancer. J Dig Dis. 2017;18:431–44.

    Article  CAS  PubMed  Google Scholar 

  8. Hosaka H, et al. Early esophageal squamous cell carcinoma mimicking reflux esophagitis. Gastrointest Endosc. 2010;71:1064. discussion 1063

    Article  Google Scholar 

  9. Bacciu A, Mercante G, Ingegnoli A, Bacciu S, Ferri T. Reflux esophagitis as a possible risk factor in the development of pharyngolaryngeal squamous cell carcinoma. Tumori. 2003;89:485–7.

    Article  PubMed  Google Scholar 

  10. Kim JJ, et al. Comparison of tight junction protein-related gene mRNA expression levels between male and female gastroesophageal reflux disease patients. Gut Liver. 2018;12:411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, et al. Bile salts disrupt human esophageal squamous epithelial barrier function by modulating tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2012;303:G199–G208.

    Article  CAS  PubMed  Google Scholar 

  12. Liu CC, Lee JW, Liu TT, Yi CH, Chen CL. Relevance of ultrastructural alterations of intercellular junction morphology in inflamed human esophagus. J Neurogastroenterol Motil. 2013;19:324–31.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Masterson JC, et al. Epithelial HIF-1alpha/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. J Clin Investig. 2019;129:3224–35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lioni M, et al. Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am J Pathol. 2007;170:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsunoda S, et al. Methylation of CLDN6, FBN2, RBP1, RBP4, TFPI2, and TMEFF2 in esophageal squamous cell carcinoma. Oncol Rep. 2009;21:1067–73.

    Article  CAS  PubMed  Google Scholar 

  16. Du Y, et al. Polymorphisms in microRNA let-7 binding sites of the HIF1AN and CLDN12 genes can predict pathologic complete response to taxane- and platinum-based neoadjuvant chemotherapy in breast cancer. Ann Transl Med. 2019;7:138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W, et al. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci Rep. 2016;6:37534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang L, et al. Increased HIF-1alpha expression in tumor cells and lymphocytes of tumor microenvironments predicts unfavorable survival in esophageal squamous cell carcinoma patients. Int J Clin Exp Pathol. 2014;7:3887–97.

    PubMed  PubMed Central  Google Scholar 

  19. Wise DR, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA. 2011;108:19611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monti E, Gariboldi MB. HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr Mol Pharmacol. 2011;4:62–77.

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacharyya A, et al. Mechanism of hypoxia-inducible factor 1 alpha-mediated Mcl1 regulation in Helicobacter pylori-infected human gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peerlings J, et al. Hypoxia and hypoxia response-associated molecular markers in esophageal cancer: a systematic review. Methods. 2017;130:51–62.

    Article  CAS  PubMed  Google Scholar 

  23. Gladek I, Ferdin J, Horvat S, Calin GA, Kunej T. HIF1A gene polymorphisms and human diseases: graphical review of 97 association studies. Genes Chromosomes Cancer. 2017;56:439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding Z, et al. Expression and significance of hypoxia-inducible factor-1 alpha and MDR1/P-glycoprotein in human colon carcinoma tissue and cells. J Cancer Res Clin Oncol. 2010;136:1697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haga N, Fujita N, Tsuruo T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene. 2003;22:5579–85.

    Article  CAS  PubMed  Google Scholar 

  28. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kim B, Srivastava SK, Kim SH. Caspase-9 as a therapeutic target for treating cancer. Expert Opin Ther Targets. 2015;19:113–27.

    Article  CAS  PubMed  Google Scholar 

  30. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JJ, et al. Comparison of tight junction protein-related gene mrna expression levels between male and female gastroesophageal reflux disease patients. Gut Liver. 2018;12:411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen Z, Xu L, Li J, Zhang N, Capilliposide C. Sensitizes esophageal squamous carcinoma cells to oxaliplatin by inducing apoptosis through the PI3K/Akt/mTOR pathway. Med Sci Monit. 2017;23:2096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets. 2013;13:245–51.

    Article  CAS  PubMed  Google Scholar 

  34. Faried A, Faried LS, Usman N, Kato H, Kuwano H. Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Ann Surg Oncol. 2007;14:3593–601.

    Article  PubMed  Google Scholar 

  35. Ma J, et al. Adenovirus-mediated RhoA shRNA suppresses growth of esophageal squamous cell carcinoma cells in vitro and in vivo. Med Oncol. 2012;29:119–26.

    Article  CAS  PubMed  Google Scholar 

  36. Tanabe K, et al. Filamin C promotes lymphatic invasion and lymphatic metastasis and increases cell motility by regulating Rho GTPase in esophageal squamous cell carcinoma. Oncotarget. 2017;8:6353–63.

    Article  PubMed  Google Scholar 

  37. Sharma P, Saini N, Sharma R. miR-107 functions as a tumor suppressor in human esophageal squamous cell carcinoma and targets Cdc42. Oncol Rep. 2017;37:3116–27.

    Article  CAS  PubMed  Google Scholar 

  38. Qin X, et al. Roles of phosphorylated JNK in esophageal squamous cell carcinomas of Kazakh ethnic. Mol Carcinog. 2014;53:526–36.

    Article  CAS  PubMed  Google Scholar 

  39. Chiyo T, et al. Galectin-9 induces mitochondria-mediated apoptosis of esophageal cancer in vitro and in vivo in a xenograft mouse model. Int J Mol Sci. 2019;20:2634.

    Article  PubMed Central  CAS  Google Scholar 

  40. Singh P, Toom S, Huang Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J Hematol Oncol. 2017;10:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen X, et al. Bile salts disrupt human esophageal squamous epithelial barrier function by modulating tight junction proteins. Am J Physiol Gastrointest Liver Physiol. 2012;303:G199–208.

    Article  CAS  PubMed  Google Scholar 

  42. Bjorkman EV, Edebo A, Oltean M, Casselbrant A. Esophageal barrier function and tight junction expression in healthy subjects and patients with gastroesophageal reflux disease: functionality of esophageal mucosa exposed to bile salt and trypsin in vitro. Scand J Gastroenterol. 2013;48:1118–26.

    Article  PubMed  CAS  Google Scholar 

  43. Abdulnour-Nakhoul SM, et al. Alterations in junctional proteins, inflammatory mediators and extracellular matrix molecules in eosinophilic esophagitis. Clin Immunol. 2013;148:265–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Darren Edwards for comments on the paper. The present study was supported by grants from the National Natural Science Foundation of China (grant No. 81902763) and Major Science and Technology Plan Project of Hainan Province (grant No. ZDKJ202005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Song or Wei Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, Z., Zhou, S. et al. Claudin-1/4 as directly target gene of HIF-1α can feedback regulating HIF-1α by PI3K-AKT-mTOR and impact the proliferation of esophageal squamous cell though Rho GTPase and p-JNK pathway. Cancer Gene Ther 29, 665–682 (2022). https://doi.org/10.1038/s41417-021-00328-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00328-2

This article is cited by

Search

Quick links