Abstract
A massive black hole exists in almost every galaxy. Black holes occasionally radiate a vast amount of light by releasing gravitational energy of accreting gas with a cumulative active period of only a few 108âyr, the so-called duty cycle of the active galactic nuclei. Many galaxies today host a starving massive black hole. Although galaxy collisions have been thought to enhance nucleus activity1,2, the origin of the duty cycle, especially the shutdown process, is still a critical issue3. Here, we show that galaxy collisions are also capable of suppressing black hole fuelling, by using an analytic model and three-dimensional hydrodynamic simulations and by applying the well-determined parameter sets for the galactic collision in the Andromeda galaxy4,5. Our models demonstrate that a central collision of galaxies can strip the torus-shaped gas surrounding the massive black hole, the putative fuelling source. The derived condition for switching off the black hole fuelling indicates that a notable fraction of currently bright nuclei can become inactive, which is reminiscent of the fading or dying active nucleus phenomena6,7,8,9 that are associated with galaxy merging events. Galaxy collisions may therefore be responsible for both switching off and turning on the nucleus activity, depending on the collision orbit (head-on or far-off-centre).
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are provided with this paper. The data that support the findings of this study are available from the corresponding author upon reasonable request, although the requester will be responsible for providing the very considerable resources needed for transferring and storing these data.
Code availability
The parent code MAGI has been made publicly available at https://bitbucket.org/ymiki/magi. It is expected that most of the extensions and modifications made to meet the specific requirements for this project will be made available in the future release; those interested can contact the corresponding author for further information.
References
Sanders, D. B. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74â91 (1988).
Hernquist, L. & Mihos, J. C. Excitation of activity in galaxies by minor mergers. Astrophys. J. 448, 41â63 (1995).
Cisternas, M. et al. The bulk of the black hole growth since z ~ 1 occurs in a secular universe: no major merger-AGN connection. Astrophys. J. 726, 57 (2011).
Miki, Y., Mori, M., Kawaguchi, T. & Saito, Y. Hunting a wandering supermassive black hole in the M31 halo hermitage. Astrophys. J. 783, 87 (2014).
Miki, Y., Mori, M. & Rich, R. M. Collision tomography: physical properties of possible progenitors of the andromeda stellar stream. Astrophys. J. 827, 82 (2016).
Lintott, C. J. et al. Galaxy Zoo: âHannyâs Voorwerpâ, a quasar light echo? Mon. Not. R. Astron. Soc. 399, 129â140 (2009).
Keel, W. C. et al. The Galaxy Zoo survey for giant AGN-ionized clouds: past and present black hole accretion events. Mon. Not. R. Astron. Soc. 420, 878â900 (2012).
Keel, W. C. et al. Fading AGN candidates: AGN histories and outflow signatures. Astrophys. J. 835, 256 (2017).
Villar-MartÃn, M. et al. A 100 kpc nebula associated with the âTeacupâ fading quasar. Mon. Not. R. Astron. Soc. 474, 2302â2312 (2018).
Yoshida, M. et al. Discovery of a very extended emission-line region around the Seyfert 2 galaxy NGC 4388. Astrophys. J. 567, 118â129 (2002).
Kawaguchi, T., Saito, Y., Miki, Y. & Mori, M. Relics of galaxy merging: observational predictions for a wandering massive black hole and accompanying star cluster in the halo of M31. Astrophys. J. Lett. 789, L13 (2014).
Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N. & Tanvir, N. A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49â52 (2001).
Fardal, M. A., Guhathakurta, P., Babul, A. & McConnachie, A. W. Investigating the Andromeda stream â III. A young shell system in M31. Mon. Not. R. Astron. Soc. 380, 15â32 (2007).
Mori, M. & Rich, R. M. The once and future Andromeda stream. Astrophys. J. Lett. 674, L77âL80 (2008).
Kirihara, T., Miki, Y., Mori, M., Kawaguchi, T. & Rich, R. M. Formation of the Andromeda giant stream: asymmetric structure and disc progenitor. Mon. Not. R. Astron. Soc. 464, 3509â3525 (2017).
Bender, R. et al. HST STIS spectroscopy of the triple nucleus of M31: two nested disks in Keplerian rotation around a supermassive black hole. Astrophys. J. 631, 280â300 (2005).
Li, Z., Wang, Q. D. & Wakker, B. P. M31* and its circumnuclear environment. Mon. Not. R. Astron. Soc. 397, 148â163 (2009).
Ho, L. C. Radiatively inefficient accretion in nearby galaxies. Astrophys. J. 699, 626â637 (2009).
Imanishi, M., Maiolino, R. & Nakagawa, T. Spitzer infrared low-resolution spectroscopic study of buried active galactic nuclei in a complete sample of nearby ultraluminous infrared galaxies. Astrophys. J. 709, 801â815 (2010).
Saripalli, L., Subrahmanyan, R. & Udaya Shankar, N. Renewed activity in the radio galaxy PKS B1545-321: twin edge-brightened beams within diffuse radio lobes. Astrophys. J. 590, 181â191 (2003).
Yamada, T. et al. MOIRCS Deep Survey. III. Active galactic nuclei in massive galaxies at z = 2â4. Astrophys. J. 699, 1354â1364 (2009).
Benson, A. J. Orbital parameters of infalling dark matter substructures. Mon. Not. R. Astron. Soc. 358, 551â562 (2005).
Khochfar, S. & Burkert, A. Orbital parameters of merging dark matter halos. Astron. Astrophys. 445, 403â412 (2006).
Barber, C., Starkenburg, E., Navarro, J. F., McConnachie, A. W. & Fattahi, A. The orbital ellipticity of satellite galaxies and the mass of the Milky Way.Mon. Not. R. Astron. Soc. 437, 959â967 (2014).
Garrison-Kimmel, S. et al. Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 471, 1709â1727 (2017).
Morinaga, Y., Ishiyama, T., Kirihara, T. & Kinjo, K. Statistical properties of substructures around Milky Way-sized haloes and their implications for the formation of stellar streams. Mon. Not. R. Astron. Soc. 487, 2718â2729 (2019).
Helmi, A. et al. The merger that led to the formation of the Milky Wayâs inner stellar halo and thick disk. Nature 563, 85â88 (2018).
Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the Galactic disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611â619 (2018).
Gordon, K. D. et al. Spitzer MIPS infrared imaging of M31: further evidence for a spiral-ring composite structure. Astrophys. J. Lett. 638, L87âL92 (2006).
Ramón-Fox, F. G. & Aceves, H. Accretion of small satellites and gas inflows in a disc galaxy. Mon. Not. R. Astron. Soc. 491, 3908â3922 (2020).
Beckert, T. & Duschl, W. J. The dynamical state of a thick cloudy torus around an AGN. Astron. Astrophys. 426, 445â454 (2004).
Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604â607 (2005).
Gabor, J. M. & Bournaud, F. Active galactic nuclei-driven outflows without immediate quenching in simulations of high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 441, 1615â1627 (2014).
Athanassoula, E., Lambert, J. C. & Dehnen, W. Can bars be destroyed by a central mass concentration? â I. Simulations. Mon. Not. R. Astron. Soc. 363, 496â508 (2005).
Hopkins, P. F. & Quataert, E. How do massive black holes get their gas? Mon. Not. R. Astron. Soc. 407, 1529â1564 (2010).
Angles-Alcazar, D. et al. Cosmological simulations of quasar fueling to sub-parsec scales using Lagrangian hyper-refinement. Preprint at https://arxiv.org/abs/2008.12303 (2020).
Geehan, J. J., Fardal, M. A., Babul, A. & Guhathakurta, P. Investigating the Andromeda stream â I. Simple analytic bulgeâdiscâhalo model for M31. Mon. Not. R. Astron. Soc. 366, 996â1011 (2006).
Tomisaka, K. & Ikeuchi, S. Starburst nucleus: galactic-scale bipolar flow. Astrophys. J. 330, 695â717 (1988).
Okada, R., Fukue, J. & Matsumoto, R. A model of astrophysical tori with magnetic fields. Publ. Astron. Soc. Jpn. 41, 133â140 (1989).
Fukue, J. & Sanbuichi, K. Model of obscuring molecular tori in Seyfert nuclei. Publ. Astron. Soc. Jpn. 45, 135â138 (1993).
Bulbul, G. E., Hasler, N., Bonamente, M. & Joy, M. An analytic model of the physical properties of galaxy clusters. Astrophys. J. 720, 1038â1044 (2010).
Hönig, S. F., Beckert, T., Ohnaka, K. & Weigelt, G. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys. 452, 459â471 (2006).
Krolik, J. H. & Begelman, M. C. Molecular tori in Seyfert galaxies: feeding the monster and hiding it. Astrophys. J. 329, 702â711 (1988).
Mor, R., Netzer, H. & Elitzur, M. Dusty structure around type-I active galactic nuclei: clumpy torus narrow-line region and near-nucleus hot dust. Astrophys. J. 705, 298â313 (2009).
Schartmann, M., Meisenheimer, K., Camenzind, M., Wolf, S. & Henning, T. Towards a physical model of dust tori in Active Galactic Nuclei. Radiative transfer calculations for a hydrostatic torus model. Astron. Astrophys. 437, 861â881 (2005).
Mateo, M. L. Dwarf galaxies of the Local Group. Annu. Rev. Astron. Astrophys. 36, 435â506 (1998).
Conselice, C. J., OâNeil, K., Gallagher, J. S. & Wyse, R. F. G. Galaxy populations and evolution in clusters. IV. Deep H i observations of dwarf elliptical galaxies in the Virgo Cluster. Astrophys. J. 591, 167â184 (2003).
Thuan, T. X., Goehring, K. M., Hibbard, J. E., Izotov, Y. I. & Hunt, L. K. The H i content of extremely metal-deficient blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 463, 4268â4286 (2016).
Toro, E. F., Spruce, M. & Speares, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25â34 (1994).
Batten, P., Clarke, N., Lambert, C. & Causon, D. On the choice of wavespeeds for the HLLC Riemann Solver. SIAM J. Sci. Comput. 18, 1553â1570 (1997).
Schmitt, H. R. et al. Testing the unified model with an infrared-selected sample of Seyfert galaxies. Astrophys. J. 555, 663â672 (2001).
Mori, M. & Burkert, A. Gas stripping of dwarf galaxies in clusters of galaxies. Astrophys. J. 538, 559â568 (2000).
Fillingham, S. P. et al. Under pressure: quenching star formation in low-mass satellite galaxies via stripping. Mon. Not. R. Astron. Soc. 463, 1916â1928 (2016).
Burtscher, L. et al. A diversity of dusty AGN tori. Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies. Astron. Astrophys. 558, A149 (2013).
Kishimoto, M. et al. Mapping the radial structure of AGN tori. Astron. Astrophys. 536, A78 (2011).
Packham, C. et al. The extended mid-infrared structure of the Circinus galaxy. Astrophys. J. Lett. 618, L17âL20 (2005).
Hagiwara, Y., Miyoshi, M., Doi, A. & Horiuchi, S. Submillimeter H2O maser in Circinus galaxy â a new probe for the circumnuclear region of active galactic nuclei. Astrophys. J. Lett. 768, L38 (2013).
Marinucci, A., Miniutti, G., Bianchi, S., Matt, G. & Risaliti, G. A Chandra view of the clumpy reflector at the heart of the Circinus galaxy. Mon. Not. R. Astron. Soc. 436, 2500â2504 (2013).
Izumi, T., Wada, K., Fukushige, R., Hamamura, S. & Kohno, K. Circumnuclear multiphase gas in the Circinus galaxy. II. The molecular and atomic obscuring structures revealed with ALMA. Astrophys. J. 867, 48 (2018).
Nenkova, M., Sirocky, M. M., Nikutta, R., IveziÄ, Ž. & Elitzur, M. AGN dusty tori. II. Observational implications of clumpiness. Astrophys. J. 685, 160â180 (2008).
Radovich, M., Klaas, U., Acosta-Pulido, J. & Lemke, D. The 10â200 μm spectral energy distribution of the prototype narrow-line X-ray galaxy NGC 7582. Astron. Astrophys. 348, 705â710 1999).
Kawaguchi, T. & Mori, M. Near-infrared reverberation by dusty clumpy tori in active galactic nuclei. Astrophys. J. 737, 105 (2011).
Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H i from Lα absorption measurements. II. Astrophys. J. 224, 132â142 (1978).
Rieke, G. H. & Lebofsky, M. J. The interstellar extinction law from 1 to 13 microns. Astrophys. J. 288, 618â621 (1985).
Ichikawa, K. et al. The differences in the torus geometry between hidden and non-hidden broad line active galactic nuclei. Astrophys. J. 803, 57 (2015).
Fuller, L. et al. Investigating the dusty torus of Seyfert galaxies using SOFIA/FORCAST photometry. Mon. Not. R. Astron. Soc. 462, 2618â2630 (2016).
GarcÃa-Bernete, I. et al. Torus model properties of an ultra-hard X-ray selected sample of Seyfert galaxies. Mon. Not. R. Astron. Soc. 486, 4917â4935 (2019).
Veilleux, S. et al. A deep Hubble Space Telescope H-band imaging survey of massive gas-rich mergers. II. The QUEST QSOs. Astrophys. J. 701, 587â606 (2009).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163â1183 (2006).
Rettura, A. et al. Comparing dynamical and photometric-stellar masses of early-type galaxies at z ~ 1. Astron. Astrophys. 458, 717â726 (2006).
Bigiel, F. & Blitz, L. A universal neutral gas profile for nearby disk galaxies. Astrophys. J. 756, 183 (2012).
Wang, J. et al. An observational and theoretical view of the radial distribution of H i gas in galaxies. Mon. Not. R. Astron. Soc. 441, 2159â2172 (2014).
Leroy, A. K. et al. The star formation efficiency in nearby galaxies: measuring where gas forms stars effectively. Astron. J. 136, 2782â2845 (2008).
Helmi, A. et al. Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).
Fritz, T. K. et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 619, A103 (2018).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Torrealba, G. et al. Discovery of two neighbouring satellites in the Carina constellation with MagLiteS. Mon. Not. R. Astron. Soc. 475, 5085â5097 (2018).
Torrealba, G., Koposov, S. E., Belokurov, V. & Irwin, M. The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater. Mon. Not. R. Astron. Soc. 459, 2370â2378 (2016).
Longeard, N. et al. Pristine dwarf galaxy survey - I. A detailed photometric and spectroscopic study of the very metal-poor Draco II satellite. Mon. Not. R. Astron. Soc. 480, 2609â2627 (2018).
Koposov, S. E. et al. Snake in the Clouds: a new nearby dwarf galaxy in the Magellanic bridge. Mon. Not. R. Astron. Soc. 479, 5343â5361 (2018).
Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529â596 (2016).
Abuter, R. et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 636, L5 (2020).
Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. II. The mass of Sagittarius A*. Astrophys. J. 616, 872â884 (2004).
Reid, M. J. et al. Trigonometric parallaxes of massive star-forming regions. VI. Galactic structure, fundamental parameters, and noncircular motions. Astrophys. J. 700, 137â148 (2009).
Cautun, M. et al. The Milky Way total mass profile as inferred from Gaia DR2. Mon. Not. R. Astron. Soc. 494, 4291â4313 (2020).
Navarro, J. F., Frenk, C. S. & White, S. D. M. Simulations of X-ray clusters. Mon. Not. R. Astron. Soc. 275, 720â740 (1995).
Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).
McMillan, P. J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 465, 76â94 (2017).
Kalberla, P. M. W. & Dedes, L. Global properties of the H i distribution in the outer Milky Way. Planar and extra-planar gas. Astron. Astrophys. 487, 951â963 (2008).
Miki, Y. & Umemura, M. MAGI: many-component galaxy initializer. Mon. Not. R. Astron. Soc. 475, 2269â2281 (2018).
Ishiyama, T. & Ando, S. The abundance and structure of subhaloes near the free streaming scale and their impact on indirect dark matter searches. Mon. Not. R. Astron. Soc. 492, 3662â3671 (2020).
Acknowledgements
We are grateful to A. Wagner, M. Umemura and K. Ohsuga for careful reading of the manuscript and for the comments that improved the manuscript. Numerical computations were performed with computational resources provided by the Multidisciplinary Cooperative Research Program of the Center for Computational Sciences at the University of Tsukuba, the Oakforest-PACS operated by the Joint Center for Advanced High-Performance Computing (JCAHPC), and resources in the Information Technology Center at the University of Tokyo. This work was supported in part by Grants-in-Aid for Specially Promoted Research by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (16002003), and by Grants-in-Aid for Scientific Research by the Japan Society for the Promotion of Sciences (JSPS) ((S) 20224002; (A) 21244013; (C) JP17K05389) and JSPS KAKENHI grant nos. JP20K14517 and JP20K04022.
Author information
Authors and Affiliations
Contributions
Y.M. contributed to modelling, code development, numerical simulations, analysis, discussion and manuscript preparation. M.M. contributed to modelling, connection to recent Galactic observations, discussion and manuscript preparation. T.K. contributed to modelling, generalization to actual AGN environments, discussion and manuscript preparation.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Jorge Moreno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Simulation parameters.
Parameters of three-dimensional hydrodynamic simulations are summarized.
Extended Data Fig. 2 Radial profile of the ratio of the gas column-densities of the infalling satellite galaxy to that of the central torus, Σsatellite/Σtorus.
The solid and dotted curves show the gas column-densities ratio for ηâ=â100 and 10, respectively.
Extended Data Fig. 3 Orbital parameters of the Milky Way satellites.
Pericentres, rperi, apocentres, rapo, orbital eccentricities, e, and orbital periods, Tr, are tabulated (median values with 84.1 and 15.9 percentiles at the 1Ï confidence level).
Extended Data Fig. 4 A series of snapshots of a clump exposed to the fast gas travelling from the left side of the simulation box.
From a to e, each panel shows the volume-density distribution Ï(z,âx) in the yâ=â0 plane at 0, 1, 2, 3, 4 kyr after the simulation starts.
Extended Data Fig. 5 Time evolution of various clumps exposed to fast infalling gas.
Different colours and linetypes indicate various clump masses Mclump and clump radii (rclump): Mclumpâ=â1.4Mâ (blue), 14 Mâ (red) and 140 Mâ (black); rclumpâ=â10â3 pc (solid), 10â2 pc (dotted) and 0.1 pc (dashed).
Extended Data Fig. 6 Time evolution of various clumps examined in Extended Data Fig. 5, presented with the normalized quantities in both axes.
The crossing time of a clump tcross is defined as rclump divided by the infalling gas flow velocity of 850 km sâ1: tcrossâ=â1.2 yr, 12 yr and 120 yr for rclumpâ=â10â3 pc, 10â2 pc and 0.1 pc, respectively. All nine curves are totally overlapping in the normalised axes.
Supplementary information
Supplementary Video 1
Time evolution of the torus gas in the torus frame (corresponding to Fig. 1aâd).
Supplementary Video 2
Time evolution of the torus gas in the torus frame (corresponding to Fig. 1eâh).
Source data
Source Data Fig. 1
Numerical data used to generate the figure.
Source Data Fig. 2
Numerical data used to plot curves in the figure.
Source Data Fig. 3
Numerical data used to plot points in the figure.
Source Data Fig. 4
Numerical data used to generate graphs in the figure.
Source Data Extended Data Fig. 2
Numerical data used to generate graphs in the figure.
Source Data Extended Data Fig. 3
Numerical data used to generate table (data are identical to those for Fig. 4).
Source Data Extended Data Fig. 6
Numerical data used to generate graphs in the figure (data are identical to those for Extended Data Fig. 5).
Rights and permissions
About this article
Cite this article
Miki, Y., Mori, M. & Kawaguchi, T. Destruction of the central black hole gas reservoir through head-on galaxy collisions. Nat Astron 5, 478â484 (2021). https://doi.org/10.1038/s41550-020-01286-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-01286-9