Abstract
In the local (redshift zâââ0) Universe, collisional ring galaxies make up only ~0.01% of galaxies1 and are formed by head-on galactic collisions that trigger radially propagating density waves2,3,4. These striking systems provide key snapshots for dissecting galactic disks and are studied extensively in the local Universe5,6,7,8,9. However, not much is known about distant (zâ>â0.1) collisional rings10,11,12,13,14. Here we present a detailed study of a ring galaxy at a look-back time of 10.8âGyr (zâ=â2.19). Compared with our Milky Way, this galaxy has a similar stellar mass, but has a stellar half-light radius that is 1.5â2.2 times larger and is forming stars 50 times faster. The extended, diffuse stellar light outside the star-forming ring, combined with a radial velocity on the ring and an intruder galaxy nearby, provides evidence for this galaxy hosting a collisional ring. If the ring is secularly evolved15,16, the implied large bar in a giant disk would be inconsistent with the current understanding of the earliest formation of barred spirals17,18,19,20,21. Contrary to previous predictions10,11,12, this work suggests that massive collisional rings were as rare 11âGyr ago as they are today. Our discovery offers a unique pathway for studying density waves in young galaxies, as well as constraining the cosmic evolution of spiral disks and galaxy groups.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The imaging data presented here are publicly available from the ZFOURGE survey website (http://zfourge.tamu.edu/) and from the 3D-HST archive (https://archive.stsci.edu/prepds/3d-hst/). The spectroscopic data of this work were based on observations made with the Keck telescope from the W. M. Keck Observatory. The raw spectroscopic data can be accessed through the publicly available Keck Observatory Archive (https://www2.keck.hawaii.edu/koa/public/koa.php). The reduced data and other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.
Code availability
The customized MOSFIRE spectroscopic fitting code used in this work can be found here (http://astronomy.swin.edu.au/~tyuan/mosfit/). Scripts related to EAGLE simulations analysis in this paper are available from A.E. (ahmedagali70@gmail.com) on reasonable request. Other scripts related to the analysis in this paper are available from T.Y. on reasonable request.
References
Madore, B. F., Nelson, E. & Petrillo, K. Atlas and catalog of collisional ring galaxies. Astrophys. J. 181, 572â604 (2009).
Lynds, R. & Toomrel, A. On the interpretation of ring galaxies: the binary ring system II Hz 4. Astrophys. J. 209, 382â388 (1976).
Struck-Marcell, C. & Higdon, J. L. Hydrodynamic models of the Cartwheel ring galaxy. Astrophys. J. 411, 108â124 (1993).
Appleton, P. N. & Struck-Marcell, C. Collisional ring galaxies. Fund. Cosmic Phys. 16, 111â220 (1996).
Higdon, J. L. Wheels of fire. I. Massive star formation in the Cartwheel ring galaxy. Astrophys. J. 455, 524 (1995).
Gerber, R. A., Lamb, S. A. & Balsara, D. S. A stellar and gas dynamical numerical model of ring galaxies. Mon. Not. R. Astron. Soc. 278, 345â366 (1996).
Struck, C. Applying the analytic theory of colliding ring galaxies. Mon. Not. R. Astron. Soc. 403, 1516â1530 (2010).
Mapelli, M. & Mayer, L. Ring galaxies from off-centre collisions. Mon. Not. R. Astron. Soc. 420, 1158â1166 (2012).
Higdon, J. L., Higdon, S. J. U., MartÃn Ruiz, S. & Rand, R. J. Molecular gas and star formation in the Cartwheel. Astrophys. J. Letters 814, L1 (2015).
Lavery, R. J., Remijan, A., Charmandaris, V., Hayes, R. D. & Ring, A. A. Probing the evolution of the galaxy interaction/merger rate using collisional ring galaxies. Astrophys. J. 612, 679â689 (2004).
Elmegreen, D. M. & Elmegreen, B. G. Rings and bent chain galaxies in the GEMS and GOODS fields. Astrophys. J. 651, 676â687 (2006).
DâOnghia, E., Mapelli, M. & Moore, B. Merger and ring galaxy formation rates at zâ¤2. Mon. Not. R. Astron. Soc. 389, 1275â1283 (2008).
Elagali, A. et al. Ring galaxies in the EAGLE hydrodynamical simulations. Mon. Not. R. Astron. Soc. 481, 2951â2969 (2018).
Genzel, R. et al. The SINS/zC-SINF survey of z ~ 2 galaxy kinematics: evidence for gravitational quenching. Astrophys. J. 785, 75 (2014).
Buta, R. J. & Combes, F. Galactic rings. Fund. Cosmic Phys. 17, 95â281 (1996).
Comeron, S. et al. ARRAKIS: atlas of resonance rings as known in the S4G. Astron. Astrophys. 562, A121 (2014).
Sheth, K. et al. Hot disks and delayed bar formation. Astrophys. J. 758, 136 (2012).
Kraljic, F., Bournaud, F. & Martig, M. The two-phase formation history of spiral galaxies traced by the cosmic evolution of the bar fraction. Astrophys. J. 757, 60 (2012).
Cen, R. Evolution of cold streams and the emergence of the Hubble sequence. Astrophys. J. Letters 789, L21 (2014).
Elmegreen, D. M. & Elmegreen, B. G. The onset of spiral structure in the universe. Astrophys. J. 781, 11 (2014).
Vincenzo, F., Kobayashi, C. & Yuan, T. Zoom-in cosmological hydrodynamical simulation of a star-forming barred, spiral galaxy at redshift z = 2. Mon. Not. R. Astron. Soc. 488, 4674â4689 (2019).
Straatman, C. M. et al. The fourstar galaxy evolution survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).
Momcheva, I. G. et al. The 3D-HST survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for ~100,000 galaxies. Astrophys. J.s 225, 27 (2016).
Cowley, M. J. et al. ZFOURGE catalogue of AGN candidates: an enhancement of 160-μm-derived star formation rates in active galaxies to z = 3.2. Mon. Not. R. Astron. Soc. 457, 629â641 (2016).
Romano, R., Mayya, Y. D. & Vorobyov, E. I. Stellar disks of collisional ring galaxies. I. New multiband images, radial intensity and color profiles, and confrontation with N-body simulations. Astron. J. 136, 1259â1289 (2008).
Tacconi, L. J. et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781â784 (2010).
Fogarty, L. et al. SWIFT observations of the Arp 147 ring galaxy system. Mon. Not. R. Astron. Soc. 417, 853â844 (2011).
Pearson, W. J. et al. Main sequence of star forming galaxies beyond the Herschel confusion limit. Astron. Astrophys. 615, A146 (2018).
van der Wel, A. et al. 3D-HST+CANDELS: the evolution of the galaxy size-mass distribution since z = 3. Astrophys. J. 788, 28 (2014).
Yuan, T.-T. et al. The most ancient spiral galaxy: a 2.6-gyr-old disk with a tranquil velocity field. Astrophys. J. 850, 61 (2017).
Planck Collaboration XVI. et al.Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713â717 (1983).
Grogin, N. A. et al. CANDELS: the cosmic assembly near-infrared deep extragalactic legacy survey. Astrophys. J. 197, 35 (2011).
Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J. 214, 24 (2014).
Miller, T. B., Gunn, J. E., van Dokkum, P., Mowla, L. & van der Wel, A. A new view of the size-mass distribution of galaxies: using r20 and r80 instead of r50. Astrophys. J. Lett. 872, L14 (2019).
Graham, A. W. & Driver, S. P. A concise reference to (projected) Sérsic R1/n quantities, including concentration, profile slopes, Petrosian indices, and Kron magnitudes. Publ. Astron. Soc. Aus. 22, 118â127 (2005).
de Vaucouleurs, G. et al. Third Reference Catalogue of Bright Galaxies (RC3) (Springer, 1991).
Mowla, L., van der Wel, A., van Dokkum, P. & Miller, T. B. A mass-dependent slope of the galaxy size-mass relation out to z ~ 3: further evidence for a direct relation between median galaxy size and median halo mass. Astrophys. J. Lett. 872, L13 (2019).
Juric, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864â914 (2008).
Wegg, C., Gerhard, O. & Portail, M. The structure of the Milky Wayâs bar outside the bulge. Mon. Not. R. Astron. Soc. 450, 4050â4069 (2015).
Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529â596 (2016).
Glazebrook, K. The Dawes Review 1: kinematic studies of star-forming galaxies across cosmic time. Publ. Astron. Soc. Aus. 30, 056 (2013).
Giovanelli, R. On the scaling relations of disk galaxies. IAU Symp. 289, 296â303 (2013).
Few, M. A., Madore, B. F. & Arp, H. C. Ring galaxiesâI. Kinematics of the southern ring galaxy AM 064-741. Mon. Not. R. Astron. Soc. 199, 633â647 (1982).
Higdon, J. L. Wheels of fire. II. Neutral hydrogen in the Cartwheel ring galaxy. Astrophys. J. 467, 241 (1996).
Higdon, J. L., Higdon, S. J. U. & Rand, R. J. Wheels of fire. IV. Star formation and the neutral interstellar medium in the ring galaxy AM0644-741. Astrophys. J. 739, 97 (2011).
Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221â231 (2009).
Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503â1513 (2008).
Tomczak, A. R. et al. The SFR-M* relation and empirical star-formation histories from ZFOURGE at 0.5 < z < 4. Astrophys. J. 817, 118 (2016).
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000â1028 (2003).
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763â795 (2003).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682â695 (2000).
Labbe, I. et al. Spitzer IRAC confirmation of z850-dropout galaxies in the Hubble ultra deep field: stellar masses and ages at z ~ 7. Astrophys. J. Lett. 649, L67âL70 (2006).
Reddy, N. A. et al. The MOSDEF survey: measurements of balmer decrements and the dust attenuation curve at redshifts z1.4 â 2.6. Astrophys. J. 806, 259 (2015).
Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245â256 (1989).
Steidel, C. C. et al. Strong nebular line ratios in the spectra of z ~ 2â3 star forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165 (2014).
Tran, K. V. H. et al. ZFIRE: galaxy cluster kinematics, Hα star formation rates, and gas phase metallicities of XMM-LSS J02182-05102 at zcl = 1.6232. Astrophys. J. 811, 28 (2015).
Crivellari, E., Wolter, A. & Trinchieri, G. The Cartwheel galaxy with XMM-Newton. Astron. Astrophys. 501, 445â453 (2009).
Licquia, T. C. & Newman, J. A. Improved estimates of the Milky Wayâs stellar mass and star formation rate from hierarchical Bayesian meta-analysis. Astrophys. J. 806, 96 (2015).
Taylor, E. N. et al. On the masses of galaxies in the local universe. Astrophys. J. 722, 1â19 (2010).
Acknowledgements
This research was supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013.
Author information
Authors and Affiliations
Contributions
T.Y. wrote the manuscript and was the overall lead of the project. A.E. carried out the EAGLE simulation analysis and contributed to the writing of the simulation results. I.L., G.G.K. and C.d.P.L. contributed substantially to the overall science interpretation, data analysis and making of the figures. L.Y.A., J.H.C., K.-V.H.T. and K.G. contributed substantially to the photometric and kinematic data analysis. All other co-authors contributed to the interpretation and data analysis, and assisted with Keck observations. All co-authors commented on this manuscript as part of an internal review process.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Astronomy thanks Ronald J. Buta, Curtis Struck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1â16, Tables 1â4 and notes.
Rights and permissions
About this article
Cite this article
Yuan, T., Elagali, A., Labbé, I. et al. A giant galaxy in the young Universe with a massive ring. Nat Astron 4, 957â964 (2020). https://doi.org/10.1038/s41550-020-1102-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-020-1102-7
This article is cited by
-
A ring in the distant Universe
Nature Astronomy (2020)