Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A roadmap for the atmospheric characterization of terrestrial exoplanets with JWST

Subjects

Abstract

Ultracool dwarf stars are abundant, long-lived and uniquely suited to enable the atmospheric study of transiting terrestrial companions with the JWST. Among them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets. While JWST Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here we propose a roadmap to characterize the TRAPPIST-1 system — and others like it — in an efficient and robust manner with JWST. We notably recommend that — although more challenging to schedule — multi-transit windows be prioritized to mitigate the effects of stellar activity and gather up to twice more transits per JWST hour spent. We conclude that, for such systems, planets cannot be studied in isolation by small programmes but rather need large-scale, joint space- and ground-based initiatives to fully exploit the capabilities of JWST for the exploration of terrestrial planets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The UCD opportunity.
Fig. 2: Stellar activity challenges spectral analysis of M-dwarf systems.
Fig. 3: Flowchart of a roadmap for the atmospheric characterization of terrestrial exoplanets with JWST.
Fig. 4: Constraining the surface heterogeneities of a host star.
Fig. 5: On the frequency of planetary transits in the TRAPPIST-1 system.

Similar content being viewed by others

Data availability

The data shown in Fig. 1b are drawn from the NASA Exoplanet Archive (accessed 29 June 2023). The transit timings behind the histogram in Fig. 5a and the suite of selected multi-transit windows in Fig. 5b are obtained from ref. 43. All data used to create the figures are publicly available at https://zenodo.org/records/11388689.

Code availability

The stellar spectra (Figs. 2 and 4) were generated with’speclib’81. The atmospheric spectra were generated with ‘Tierra’82. The light curve model (Fig. 4) was generated with ‘fleck’83.

References

  1. Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).

    ADS  Google Scholar 

  2. Gaidos, E., Mann, A. W., Kraus, A. L. & Ireland, M. They are small worlds after all: revised properties of Kepler M dwarf stars and their planets. Mon. Not. R. Astron. Soc. 457, 2877–2899 (2016).

    ADS  Google Scholar 

  3. Ment, K. & Charbonneau, D. The occurrence rate of terrestrial planets orbiting nearby mid-to-late M dwarfs from TESS sectors 1–42. Astron. J. 165, 265 (2023).

    ADS  Google Scholar 

  4. Bochanski, J. J. et al. The luminosity and mass functions of low-mass stars in the galactic disk. II. The field. Astron. J. 139, 2679–2699 (2010).

    ADS  Google Scholar 

  5. Triaud, A. H. M. J. et al. Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nat. Astron. https://doi.org/10.1038/s41550-023-02157-9 (2023).

  6. Kostov, V. B. et al. The L 98-59 system: three transiting, terrestrial-size planets orbiting a nearby M dwarf. Astron. J. 158, 32 (2019).

    ADS  Google Scholar 

  7. Dittmann, J. A. et al. A temperate rocky super-Earth transiting a nearby cool star. Nature 544, 333–336 (2017).

    ADS  Google Scholar 

  8. Vanderspek, R. et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. Astrophys. J. Lett. 871, L24 (2019).

    ADS  Google Scholar 

  9. Crossfield, I. J. M. et al. A super-Earth and sub-Neptune transiting the late-type M dwarf LP 791-18. Astrophys. J. Lett. 883, L16 (2019).

    ADS  Google Scholar 

  10. Peterson, M. S. et al. A temperate Earth-sized planet with tidal heating transiting an M6 star. Nature 617, 701–705 (2023).

    ADS  Google Scholar 

  11. Delrez, L. et al. Two temperate super-Earths transiting a nearby late-type M dwarf. Astron. Astrophys. 667, A59 (2022).

    Google Scholar 

  12. Ment, K. et al. TOI 540 b: a planet smaller than earth orbiting a nearby rapidly rotating low-mass star. Astron. J. 161, 23 (2021).

    ADS  Google Scholar 

  13. Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    ADS  Google Scholar 

  14. Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Google Scholar 

  15. Lichtenberg, T. & Clement, M. S. Reduced late bombardment on rocky exoplanets around M dwarfs. Astrophys. J. Lett. 938, L3 (2022).

    ADS  Google Scholar 

  16. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403–412 (1998).

    ADS  Google Scholar 

  17. Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).

    ADS  Google Scholar 

  18. Kane, S. R., Kopparapu, R. K. & Domagal-Goldman, S. D. On the frequency of potential venus analogs from Kepler data. Astrophys. J. Lett. 794, L5 (2014).

    ADS  Google Scholar 

  19. Tian, F. & Ida, S. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8, 177–180 (2015).

    ADS  Google Scholar 

  20. Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015–2028 (2019).

    ADS  Google Scholar 

  21. Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019).

    ADS  Google Scholar 

  22. Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

    ADS  Google Scholar 

  23. Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).

    Google Scholar 

  24. Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 6, 1296–1307 (2022).

    ADS  Google Scholar 

  25. Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    ADS  Google Scholar 

  26. Dong, C. et al. The dehydration of water worlds via atmospheric losses. Astrophys. J. Lett. 847, L4 (2017).

    ADS  Google Scholar 

  27. Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).

    ADS  Google Scholar 

  28. Dong, C. et al. Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proc. Natl Acad. Sci. USA 115, 260–265 (2018).

    ADS  Google Scholar 

  29. Kral, Q. et al. Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Mon. Not. R. Astron. Soc. 479, 2649–2672 (2018).

    ADS  Google Scholar 

  30. Hu, R., Gaillard, F. & Kite, E. S. Narrow loophole for H2-dominated atmospheres on habitable rocky planets around M dwarfs. Astrophys. J. Lett. 948, L20 (2023).

    ADS  Google Scholar 

  31. Ormel, C. W., Liu, B. & Schoonenberg, D. Formation of TRAPPIST-1 and other compact systems. Astron. Astrophys. 604, A1 (2017).

    ADS  Google Scholar 

  32. Weiss, L. M. et al. The California-Kepler Survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. Astron. J. 155, 48 (2018).

    ADS  Google Scholar 

  33. Sandford, E., Kipping, D. & Collins, M. On planetary systems as ordered sequences. Mon. Not. R. Astron. Soc. 505, 2224–2246 (2021).

    ADS  Google Scholar 

  34. Mishra, L. et al. The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: Kepler observes Bern exoplanets. Theoretical perspectives on the architecture of planetary systems: peas in a pod. Astron. Astrophys. 656, A74 (2021).

    Google Scholar 

  35. Millholland, S. C. & Winn, J. N. Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes. Astrophys. J. Lett. 920, L34 (2021).

    ADS  Google Scholar 

  36. Goyal, A. V. & Wang, S. Generalized peas in a pod: extending intra-system mass uniformity to non-TTV systems via the Gini Index. Astrophys. J. 933, 162 (2022).

    ADS  Google Scholar 

  37. Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. In Ground-based and Airborne Telescopes VII (eds Marshall, H. K. & Spyromilio, J.) 107001I (SPIE, 2018).

  38. Burdanov, A., Delrez, L., Gillon, M. & Jehin, E. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1007–1023 (Springer Cham, 2018).

  39. Gibbs, A. et al. EDEN: sensitivity analysis and transiting planet detection limits for nearby late red dwarfs. Astron. J. 159, 169 (2020).

    ADS  Google Scholar 

  40. Tamburo, P. et al. The Perkins INfrared Exosatellite Survey (PINES) I. Survey overview, reduction pipeline, and early results. Astron. J. 163, 253 (2022).

    ADS  Google Scholar 

  41. Gillon, M., Jehin, E., Fumel, A., Magain, P. & Queloz, D. TRAPPIST-UCDTS: a prototype search for habitable planets transiting ultra-cool stars. EPJ Web Conf. 47, 03001 (2013).

    Google Scholar 

  42. Ducrot, E. et al. TRAPPIST-1: global results of the Spitzer Exploration Science Program Red Worlds. Astron. Astrophys. 640, A112 (2020).

    Google Scholar 

  43. Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2, 1 (2021).

    Google Scholar 

  44. Dorn, C. & Lichtenberg, T. Hidden water in magma ocean exoplanets. Astrophys. J. Lett. 922, L4 (2021).

    ADS  Google Scholar 

  45. de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69–72 (2016).

    ADS  Google Scholar 

  46. de Wit, J. et al. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nat. Astron. 2, 214–219 (2018).

    ADS  Google Scholar 

  47. Wakeford, H. R. et al. Disentangling the planet from the star in late-type M dwarfs: a case study of TRAPPIST-1g. Astron. J. 157, 11 (2019).

    ADS  Google Scholar 

  48. Turbet, M. et al. A review of possible planetary atmospheres in the TRAPPIST-1 system. Space Sci. Rev. 216, 100 (2020).

    ADS  Google Scholar 

  49. Garcia, L. J. et al. HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h. Astron. Astrophys. 665, A19 (2022).

    Google Scholar 

  50. Gressier, A. et al. Near-infrared transmission spectrum of TRAPPIST-1 h using Hubble WFC3 G141 observations. Astron. Astrophys. 658, A133 (2022).

    Google Scholar 

  51. Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39–42 (2023).

    ADS  Google Scholar 

  52. Lim, O. et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: evidence for strong stellar contamination in the transmission spectra. Astrophys. J. Lett. 955, L22 (2023).

    ADS  Google Scholar 

  53. Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746–749 (2023).

    ADS  Google Scholar 

  54. Lincowski, A. P. et al. Potential atmospheric compositions of TRAPPIST-1 c constrained by JWST/MIRI observations at 15 μm. Astrophys. J. Lett. 955, L7 (2023).

    ADS  Google Scholar 

  55. Howard, W. S. et al. Characterizing the near-infrared spectra of flares from TRAPPIST-1 during JWST transit spectroscopy observations. Astrophys. J. 959, 64 (2023).

    ADS  Google Scholar 

  56. Moran, S. E. et al. High tide or riptide on the cosmic shoreline? A water-rich atmosphere or stellar contamination for the warm super-Earth GJ 486b from JWST observations. Astrophys. J. Lett. 948, L11 (2023).

    ADS  Google Scholar 

  57. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).

    ADS  Google Scholar 

  58. Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).

    ADS  Google Scholar 

  59. Witzke, V. et al. MPS-ATLAS: a fast all-in-one code for synthesising stellar spectra. Astron. Astrophys. 653, A65 (2021).

    Google Scholar 

  60. Rustamkulov, Z. et al. Early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659–663 (2023).

    ADS  Google Scholar 

  61. Zhang, Z., Zhou, Y., Rackham, B. V. & Apai, D. The near-infrared transmission spectra of TRAPPIST-1 planets b, c, d, e, f, and g and stellar contamination in multi-epoch transit spectra. Astron. J. 156, 178 (2018).

    ADS  Google Scholar 

  62. Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).

    ADS  Google Scholar 

  63. Krissansen-Totton, J., Garland, R., Irwin, P. & Catling, D. C. Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study. Astron. J. 156, 114 (2018).

    ADS  Google Scholar 

  64. Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).

    ADS  Google Scholar 

  65. Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).

    ADS  Google Scholar 

  66. Wunderlich, F. et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astron. Astrophys. 624, A49 (2019).

    Google Scholar 

  67. Gialluca, M. T., Robinson, T. D., Rugheimer, S. & Wunderlich, F. Characterizing atmospheres of transiting Earth-like exoplanets orbiting M dwarfs with James Webb Space Telescope. Publ. Astron. Soc. Pac. 133, 054401 (2021).

    ADS  Google Scholar 

  68. Faria, J. P. et al. A candidate short-period sub-Earth orbiting Proxima Centauri. Astron. Astrophys. 658, A115 (2022).

    Google Scholar 

  69. Rackham, B. V. & de Wit, J. Towards robust corrections for stellar contamination in JWST exoplanet transmission spectra. Preprint at https://arxiv.org/abs/2303.15418 (2023).

  70. Berardo, D., de Wit, J. & Rackham, B. V. Empirically constraining the spectra of stellar surface features using time-resolved spectroscopy. Astrophys. J. Lett. 961, L18 (2024).

    ADS  Google Scholar 

  71. Vögler, A. et al. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005).

    ADS  Google Scholar 

  72. Morris, B. M. et al. Non-detection of contamination by stellar activity in the spitzer transit light curves of TRAPPIST-1. Astrophys. J. 863, L32 (2018).

    ADS  Google Scholar 

  73. Krissansen-Totton, J. Implications of atmospheric nondetections for TRAPPIST-1 inner planets on atmospheric retention prospects for outer planets. Astrophys. J. Lett. 951, L39 (2023).

    ADS  Google Scholar 

  74. Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at https://arxiv.org/abs/2404.02932 (2024).

  75. Luger, R., Foreman-Mackey, D., Hedges, C. & Hogg, D. W. Mapping stellar surfaces. I. Degeneracies in the rotational light-curve problem. Astron. J. 162, 123 (2021).

    ADS  Google Scholar 

  76. Luger, R., Foreman-Mackey, D. & Hedges, C. Mapping stellar surfaces. II. An interpretable Gaussian process model for light curves. Astron. J. 162, 124 (2021).

    ADS  Google Scholar 

  77. Luger, R. et al. Mapping stellar surfaces III: an efficient, scalable, and open-source Doppler imaging model. Preprint at https://arxiv.org/abs/2110.06271 (2021).

  78. Mallonn, M. et al. GJ 1214: rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum. Astron. Astrophys. 614, A35 (2018).

    Google Scholar 

  79. Rosich, A. et al. Correcting for chromatic stellar activity effects in transits with multiband photometric monitoring: application to WASP-52. Astron. Astrophys. 641, A82 (2020).

    Google Scholar 

  80. Perger, M. et al. A machine learning approach for correcting radial velocities using physical observables. Astron. Astrophys. 672, A118 (2023).

    Google Scholar 

  81. Rackham, B. V. speclib. Zenodo https://doi.org/10.5281/zenodo.7868050 (2023).

  82. Niraula, P. et al. The impending opacity challenge in exoplanet atmospheric characterization. Nat. Astron. 6, 1287–1295 (2022).

    ADS  Google Scholar 

  83. Morris, B. fleck: fast approximate light curves for starspot rotational modulation. J. Open Source Softw. 5, 2103 (2020).

    ADS  Google Scholar 

  84. Reylé, C. et al. The 10 parsec sample in the Gaia era. Astron. Astrophys. 650, A201 (2021).

    Google Scholar 

  85. Hansen, C. J. & Kawaler, S. D. Stellar Interiors. Physical Principles, Structure, and Evolution (Springer, 1994).

  86. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS  Google Scholar 

  87. Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Contributions

J.d.W. and R.D. led this community-supported project. B.V.R. led the production of the figures together with J.d.W., R.D., O.L., B.B., P.N., D.B. and Z.d.B. E.D. and L.K. led the discussions associated with emission studies. I.R. led the discussions associated with complementary ground-based studies. A.I., A.S., N.K. and V.W. led the discussions related to stellar models. All authors discussed the topics in the paper, contributed to the writing and commented on the paper at all stages.

Corresponding author

Correspondence to Julien de Wit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TRAPPIST-1 JWST Community Initiative. A roadmap for the atmospheric characterization of terrestrial exoplanets with JWST. Nat Astron 8, 810–818 (2024). https://doi.org/10.1038/s41550-024-02298-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02298-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing