Abstract
Ultracool dwarf stars are abundant, long-lived and uniquely suited to enable the atmospheric study of transiting terrestrial companions with the JWST. Among them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets. While JWST Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here we propose a roadmap to characterize the TRAPPIST-1 system â and others like it â in an efficient and robust manner with JWST. We notably recommend that â although more challenging to schedule â multi-transit windows be prioritized to mitigate the effects of stellar activity and gather up to twice more transits per JWST hour spent. We conclude that, for such systems, planets cannot be studied in isolation by small programmes but rather need large-scale, joint space- and ground-based initiatives to fully exploit the capabilities of JWST for the exploration of terrestrial planets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data shown in Fig. 1b are drawn from the NASA Exoplanet Archive (accessed 29 June 2023). The transit timings behind the histogram in Fig. 5a and the suite of selected multi-transit windows in Fig. 5b are obtained from ref. 43. All data used to create the figures are publicly available at https://zenodo.org/records/11388689.
References
Dressing, C. D. & Charbonneau, D. The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys. J. 807, 45 (2015).
Gaidos, E., Mann, A. W., Kraus, A. L. & Ireland, M. They are small worlds after all: revised properties of Kepler M dwarf stars and their planets. Mon. Not. R. Astron. Soc. 457, 2877â2899 (2016).
Ment, K. & Charbonneau, D. The occurrence rate of terrestrial planets orbiting nearby mid-to-late M dwarfs from TESS sectors 1â42. Astron. J. 165, 265 (2023).
Bochanski, J. J. et al. The luminosity and mass functions of low-mass stars in the galactic disk. II. The field. Astron. J. 139, 2679â2699 (2010).
Triaud, A. H. M. J. et al. Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nat. Astron. https://doi.org/10.1038/s41550-023-02157-9 (2023).
Kostov, V. B. et al. The L 98-59 system: three transiting, terrestrial-size planets orbiting a nearby M dwarf. Astron. J. 158, 32 (2019).
Dittmann, J. A. et al. A temperate rocky super-Earth transiting a nearby cool star. Nature 544, 333â336 (2017).
Vanderspek, R. et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. Astrophys. J. Lett. 871, L24 (2019).
Crossfield, I. J. M. et al. A super-Earth and sub-Neptune transiting the late-type M dwarf LP 791-18. Astrophys. J. Lett. 883, L16 (2019).
Peterson, M. S. et al. A temperate Earth-sized planet with tidal heating transiting an M6 star. Nature 617, 701â705 (2023).
Delrez, L. et al. Two temperate super-Earths transiting a nearby late-type M dwarf. Astron. Astrophys. 667, A59 (2022).
Ment, K. et al. TOI 540 b: a planet smaller than earth orbiting a nearby rapidly rotating low-mass star. Astron. J. 161, 23 (2021).
Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221â224 (2016).
Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456â460 (2017).
Lichtenberg, T. & Clement, M. S. Reduced late bombardment on rocky exoplanets around M dwarfs. Astrophys. J. Lett. 938, L3 (2022).
Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403â412 (1998).
Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).
Kane, S. R., Kopparapu, R. K. & Domagal-Goldman, S. D. On the frequency of potential venus analogs from Kepler data. Astrophys. J. Lett. 794, L5 (2014).
Tian, F. & Ida, S. Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8, 177â180 (2015).
Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015â2028 (2019).
Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307â313 (2019).
Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).
Way, M. J. & Del Genio, A. D. Venusian habitable climate scenarios: modeling venus through time and applications to slowly rotating Venus-like exoplanets. J. Geophys. Res. Planets 125, e06276 (2020).
Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 6, 1296â1307 (2022).
Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119â143 (2015).
Dong, C. et al. The dehydration of water worlds via atmospheric losses. Astrophys. J. Lett. 847, L4 (2017).
Lincowski, A. P. et al. Evolved climates and observational discriminants for the TRAPPIST-1 planetary system. Astrophys. J. 867, 76 (2018).
Dong, C. et al. Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proc. Natl Acad. Sci. USA 115, 260â265 (2018).
Kral, Q. et al. Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Mon. Not. R. Astron. Soc. 479, 2649â2672 (2018).
Hu, R., Gaillard, F. & Kite, E. S. Narrow loophole for H2-dominated atmospheres on habitable rocky planets around M dwarfs. Astrophys. J. Lett. 948, L20 (2023).
Ormel, C. W., Liu, B. & Schoonenberg, D. Formation of TRAPPIST-1 and other compact systems. Astron. Astrophys. 604, A1 (2017).
Weiss, L. M. et al. The California-Kepler Survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. Astron. J. 155, 48 (2018).
Sandford, E., Kipping, D. & Collins, M. On planetary systems as ordered sequences. Mon. Not. R. Astron. Soc. 505, 2224â2246 (2021).
Mishra, L. et al. The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: Kepler observes Bern exoplanets. Theoretical perspectives on the architecture of planetary systems: peas in a pod. Astron. Astrophys. 656, A74 (2021).
Millholland, S. C. & Winn, J. N. Split peas in a pod: intra-system uniformity of super-Earths and sub-Neptunes. Astrophys. J. Lett. 920, L34 (2021).
Goyal, A. V. & Wang, S. Generalized peas in a pod: extending intra-system mass uniformity to non-TTV systems via the Gini Index. Astrophys. J. 933, 162 (2022).
Delrez, L. et al. SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. In Ground-based and Airborne Telescopes VII (eds Marshall, H. K. & Spyromilio, J.) 107001I (SPIE, 2018).
Burdanov, A., Delrez, L., Gillon, M. & Jehin, E. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1007â1023 (Springer Cham, 2018).
Gibbs, A. et al. EDEN: sensitivity analysis and transiting planet detection limits for nearby late red dwarfs. Astron. J. 159, 169 (2020).
Tamburo, P. et al. The Perkins INfrared Exosatellite Survey (PINES) I. Survey overview, reduction pipeline, and early results. Astron. J. 163, 253 (2022).
Gillon, M., Jehin, E., Fumel, A., Magain, P. & Queloz, D. TRAPPIST-UCDTS: a prototype search for habitable planets transiting ultra-cool stars. EPJ Web Conf. 47, 03001 (2013).
Ducrot, E. et al. TRAPPIST-1: global results of the Spitzer Exploration Science Program Red Worlds. Astron. Astrophys. 640, A112 (2020).
Agol, E. et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2, 1 (2021).
Dorn, C. & Lichtenberg, T. Hidden water in magma ocean exoplanets. Astrophys. J. Lett. 922, L4 (2021).
de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69â72 (2016).
de Wit, J. et al. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nat. Astron. 2, 214â219 (2018).
Wakeford, H. R. et al. Disentangling the planet from the star in late-type M dwarfs: a case study of TRAPPIST-1g. Astron. J. 157, 11 (2019).
Turbet, M. et al. A review of possible planetary atmospheres in the TRAPPIST-1 system. Space Sci. Rev. 216, 100 (2020).
Garcia, L. J. et al. HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h. Astron. Astrophys. 665, A19 (2022).
Gressier, A. et al. Near-infrared transmission spectrum of TRAPPIST-1 h using Hubble WFC3 G141 observations. Astron. Astrophys. 658, A133 (2022).
Greene, T. P. et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature 618, 39â42 (2023).
Lim, O. et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: evidence for strong stellar contamination in the transmission spectra. Astrophys. J. Lett. 955, L22 (2023).
Zieba, S. et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c. Nature 620, 746â749 (2023).
Lincowski, A. P. et al. Potential atmospheric compositions of TRAPPIST-1 c constrained by JWST/MIRI observations at 15 μm. Astrophys. J. Lett. 955, L7 (2023).
Howard, W. S. et al. Characterizing the near-infrared spectra of flares from TRAPPIST-1 during JWST transit spectroscopy observations. Astrophys. J. 959, 64 (2023).
Moran, S. E. et al. High tide or riptide on the cosmic shoreline? A water-rich atmosphere or stellar contamination for the warm super-Earth GJ 486b from JWST observations. Astrophys. J. Lett. 948, L11 (2023).
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets. Astrophys. J. 853, 122 (2018).
Rackham, B. V., Apai, D. & Giampapa, M. S. The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars. Astron. J. 157, 96 (2019).
Witzke, V. et al. MPS-ATLAS: a fast all-in-one code for synthesising stellar spectra. Astron. Astrophys. 653, A65 (2021).
Rustamkulov, Z. et al. Early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM. Nature 614, 659â663 (2023).
Zhang, Z., Zhou, Y., Rackham, B. V. & Apai, D. The near-infrared transmission spectra of TRAPPIST-1 planets b, c, d, e, f, and g and stellar contamination in multi-epoch transit spectra. Astron. J. 156, 178 (2018).
Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T. & Fortney, J. J. Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys. J. 850, 121 (2017).
Krissansen-Totton, J., Garland, R., Irwin, P. & Catling, D. C. Detectability of biosignatures in anoxic atmospheres with the James Webb Space Telescope: a TRAPPIST-1e case study. Astron. J. 156, 114 (2018).
Lustig-Yaeger, J., Meadows, V. S. & Lincowski, A. P. The detectability and characterization of the TRAPPIST-1 exoplanet atmospheres with JWST. Astron. J. 158, 27 (2019).
Fauchez, T. J. et al. Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. Astrophys. J. 887, 194 (2019).
Wunderlich, F. et al. Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astron. Astrophys. 624, A49 (2019).
Gialluca, M. T., Robinson, T. D., Rugheimer, S. & Wunderlich, F. Characterizing atmospheres of transiting Earth-like exoplanets orbiting M dwarfs with James Webb Space Telescope. Publ. Astron. Soc. Pac. 133, 054401 (2021).
Faria, J. P. et al. A candidate short-period sub-Earth orbiting Proxima Centauri. Astron. Astrophys. 658, A115 (2022).
Rackham, B. V. & de Wit, J. Towards robust corrections for stellar contamination in JWST exoplanet transmission spectra. Preprint at https://arxiv.org/abs/2303.15418 (2023).
Berardo, D., de Wit, J. & Rackham, B. V. Empirically constraining the spectra of stellar surface features using time-resolved spectroscopy. Astrophys. J. Lett. 961, L18 (2024).
Vögler, A. et al. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335â351 (2005).
Morris, B. M. et al. Non-detection of contamination by stellar activity in the spitzer transit light curves of TRAPPIST-1. Astrophys. J. 863, L32 (2018).
Krissansen-Totton, J. Implications of atmospheric nondetections for TRAPPIST-1 inner planets on atmospheric retention prospects for outer planets. Astrophys. J. Lett. 951, L39 (2023).
Redfield, S. et al. Report of the Working Group on Strategic Exoplanet Initiatives with HST and JWST. Preprint at https://arxiv.org/abs/2404.02932 (2024).
Luger, R., Foreman-Mackey, D., Hedges, C. & Hogg, D. W. Mapping stellar surfaces. I. Degeneracies in the rotational light-curve problem. Astron. J. 162, 123 (2021).
Luger, R., Foreman-Mackey, D. & Hedges, C. Mapping stellar surfaces. II. An interpretable Gaussian process model for light curves. Astron. J. 162, 124 (2021).
Luger, R. et al. Mapping stellar surfaces III: an efficient, scalable, and open-source Doppler imaging model. Preprint at https://arxiv.org/abs/2110.06271 (2021).
Mallonn, M. et al. GJ 1214: rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum. Astron. Astrophys. 614, A35 (2018).
Rosich, A. et al. Correcting for chromatic stellar activity effects in transits with multiband photometric monitoring: application to WASP-52. Astron. Astrophys. 641, A82 (2020).
Perger, M. et al. A machine learning approach for correcting radial velocities using physical observables. Astron. Astrophys. 672, A118 (2023).
Rackham, B. V. speclib. Zenodo https://doi.org/10.5281/zenodo.7868050 (2023).
Niraula, P. et al. The impending opacity challenge in exoplanet atmospheric characterization. Nat. Astron. 6, 1287â1295 (2022).
Morris, B. fleck: fast approximate light curves for starspot rotational modulation. J. Open Source Softw. 5, 2103 (2020).
Reylé, C. et al. The 10 parsec sample in the Gaia era. Astron. Astrophys. 650, A201 (2021).
Hansen, C. J. & Kawaler, S. D. Stellar Interiors. Physical Principles, Structure, and Evolution (Springer, 1994).
Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231â246 (2001).
Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pac. 130, 114401 (2018).
Author information
Authors and Affiliations
Consortia
Contributions
J.d.W. and R.D. led this community-supported project. B.V.R. led the production of the figures together with J.d.W., R.D., O.L., B.B., P.N., D.B. and Z.d.B. E.D. and L.K. led the discussions associated with emission studies. I.R. led the discussions associated with complementary ground-based studies. A.I., A.S., N.K. and V.W. led the discussions related to stellar models. All authors discussed the topics in the paper, contributed to the writing and commented on the paper at all stages.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
TRAPPIST-1 JWST Community Initiative. A roadmap for the atmospheric characterization of terrestrial exoplanets with JWST. Nat Astron 8, 810â818 (2024). https://doi.org/10.1038/s41550-024-02298-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-024-02298-5