Abstract
Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300âfs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.
Similar content being viewed by others
Main
Highly selective, on-demand photocontrol of the electronic dynamics and reactivity of a material is one of the holy grails of photochemistry. One promising avenue to realize this control is through the selective stimulation of a materialâs structural and vibrational dynamics1. However, despite considerable effort over the last two decades, achieving vibrational control (VC) of photoreactivity has proven to be a challenging task, requiring advances in chemistry, materials science and ultrafast photonics. Only a handful of studies to date have demonstrated the utility of VC; examples include the mode-selective modulation of charge transfer and carrier detrapping2,3,4,5, triggered chemical reactions and species-selective photochemistry6,7. However, in these pioneering experiments, VC has largely been limited to model chemical systems in solution; the application of VC to practically useful material systems has only been demonstrated on trapped carriers with approximately millisecond lifetimes, disregarding the ultrafast character and selectivity of the approach3. Ultrafast VC measurements would provide invaluable insights into important photophysical phenomena, such as electronâphonon-coupling effects, polaronic effects and ultrafast structural dynamics, which, in turn, may lead to improvements in material properties and device performances.
One of the most promising classes of optoelectronic materials are âhybridâ organicâinorganic perovskites (HOIPs)âhigh-performance photovoltaic materials that are inexpensive to produce, lightweight, flexible and broadly tunable8. HOIP nanomaterials also demonstrate potential in diverse applications including light-emitting diodes9, lasers10 and non-volatile memory11. Moreover, as a hybrid material, HOIPs combine the low electronic disorder and delocalized electronic states of inorganic semiconductors with the localized and tunable structural dynamics of organic molecules. The combination of organic and inorganic sublattices results in a rich vibrational manifold, from low-energy phonons to high-frequency intramolecular vibrations. These features, together with the rotational mobility of the organic cation12,13,14,15 and high structural anharmonicity16,17, result in a complex dynamical behaviour well suited for VC experiments. Such experiments can, for instance, address interactions between the organic A-site cations and the surrounding inorganic cage. Despite minimally contributing to the HOIPsâ frontier electronic states18, organic cation dynamics may influence the optoelectronic properties of HOIPs through a variety of different means, including via the modulation of dielectric constant19 and large polaron formation20,21, among others22,23. Several experimental studies have suggested that interactions between the organic A-site cation and the inorganic cage may modulate the band-edge properties of the perovskite24,25,26,27. However, the actual mechanisms behind these phenomena remains controversial, and the extent of their influence on the optoelectronic properties of HOIPs remains unclear28,29,30,31.
Here we address the issue of cationâlattice interactions in HOIPs via the VC of perovskite photovoltaic devices. For this, we realize a novel spectroscopic technique based on the vibrationally promoted electronic resonance (VIPER) approach. Conceived as an optical extension to two-dimensional (2D) exchange spectroscopy experiments6,7, the VIPER approach exhibits several advantages that make it an ideal candidate for exploiting VC, including high infrared (IR) selectivity, background-free detection, sub-picosecond time resolution and sensitivity to electronâphonon couplings6,7. To more directly access material and device properties, we have combined VIPER with photocurrent detection (termed PC-VIPER) (Fig. 1a). In this approach, interferometrically separated IR pulses first arrive at the photovoltaic device, bringing resonant IR-active vibrational modes into their excited states. After a delay time (t), a visible pulse promotes this sub-ensemble to the electronic first excited state, which can then produce a photocurrent. The visible pulse chosen here is off-resonant with this electronic transition such that the visible pulse alone does not electronically excite the sample; only the combination of vibrational and electronic transitions populates the electronic excited state and produces photocurrent. Moreover, this process can only occur if the target vibrational mode is coupled to the electronic transition in question and if this coupling persists during the time interval between the vibrational and electronic transitions. This makes any observed signal intrinsically sensitive to electronâphonon-coupling effects6,7. Furthermore, changing the time delay between the visible and IR pulses enables the timescales of these couplings and/or the lifetimes of the stimulated vibrational modes to be monitored. Additionally, the use of an interferometer enables resolution along the IR frequency axis; by sweeping the interferometer and Fourier transforming the resulting time-domain data, any signal can be assigned to individual vibrational bands within the bandwidth of the IR pulse. Our approach also benefits from all the advantages of photocurrent action spectroscopy32, including operando measurements at low-power conditions, the absence of scattering and outcoupling artefacts, as well as the use of sensitive background-free lock-in detection. Although PC-VIPER is suited for perovskite materials used for photovoltaics; we also demonstrate that luminescent perovskite nanocrystals (NCs) for light-emitting diode and fluorescence-labelling applications can be studied by an analogous technique in which material photoluminescence is detected after the VIPER excitation sequence (termed PL-VIPER). PL-VIPER is broadly analogous to the recently reported fluorescence-encoded infrared technique that has demonstrated high sensitivity (down to single molecules) for model molecular systems33,34.
The systems under investigation here include bulk FAPbBr3 and CsPbBr3 perovskite devices as well as FAPbBr3 nanocrystalline films. The incident photon to converted electron spectra of the FAPbBr3 device (Fig. 2a) exhibits a sharp band edge at 550ânm with efficiencies up to 80%. To ensure minimal direct absorbtion of the visible pump pulse without IR pre-excitation, the centre wavelength of the pump was set at approximately 580ânm, well below the onset of efficient photocurrent generation.
The FTIR spectrum of an FAPbBr3 film (Fig. 2b) shows a weak band at ~1,615âcmâ1 and a strong line at ~1,715âcmâ1, corresponding to NâH scissoring (δ1(NH2)) and asymmetric stretching of the NâC=N double bond (ν(NâC=N)) of formamidinium (FA), respectively35. The IR attenuated total reflection spectra of the full FAPbBr3 and CsPbBr3 devices (Supplementary Note 1) show no other vibrational modes over this measurement range. To avoid IR absorption and dispersion in glass, indium tin oxide and poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) charge extraction layer, we illuminate the perovskite through semitransparent top Ag electrodes during VIPER experiments.
PC-VIPER and PL-VIPER experiments
Figure 3 displays the 2D PC-VIPER maps for the FAPbBr3 and CsPbBr3 photovoltaic devices. The maps are obtained by scanning the interferometer delay (Ï) for a range of IRâvisible delays (t). Thereafter, the time-domain signal is Fourier transformed along the Ï axis to produce an IR action spectrum3,36.
Within the pulse-overlap regime (±50âfs), both materials exhibit a broad, featureless signal centred at ~1,600âcmâ1, attributable to residual non-resonant two-photon effects. This broad signal was greatly suppressed via the time-domain phasing and filtering process (Supplementary Note 2) but could not be fully eliminated. Beyond the pulse-overlap time region (that is, >80âfs, where the IR vibrational pre-excitation arrives before the visible electronic pump), the non-resonant signal for FAPbBr3 (but crucially not CsPbBr3) gives way to a single sharp line, centred at 1,720 (±10)âcmâ1. The agreement of this line with the frequency of the ν(NâC=N) vibration15 of FA (Fig. 2b), alongside the absence of a similar line for CsPbBr3, suggests that it originates from FA vibrations. We assign this feature to the vibronic coupling between the FA cationâs ν(NâC=N) vibrational mode and the electronic state of FAPbBr3. Interestingly, despite the IR pre-excitation spectrum covering two features (the ν(NâC=N) and δ1(NH2) modes), only the line at 1,720âcmâ1 is observed. Intuitively, any VIPER-active modes should be both IR and Raman active, as IR activity enables the population of a vibrationally excited state and (resonance) Raman activity is associated with the strength of vibronic coupling. However, considering that we use non-resonance Raman activity for our analysis and given the complexity of the interaction mechanism, more complex selection rules may be in place.
To confirm that the observed vibronic phenomenon exists across different perovskite materials, we repeat our VC experiments on FAPbBr3 NCs. Such NCs are known to have outstanding photoluminescent properties; for this reason, we employed PL-VIPER experiments (Supplementary Note 3). The experimental parameters and data analysis approach were identical to the PC-VIPER experiments described above.
As with PC-VIPER, a single sharp vibrational line at ~1,720âcmâ1, corresponding to the ν(NâC=N) mode of FA, is observed in the PL-VIPER experiments (Fig. 4) with a distinct absence of the δ1(NH2) mode also covered by the pulse. The PC-VIPER and PL-VIPER responses exhibit similar lineshapes (Fig. 3c) and dynamics (Fig. 4b). The slight discrepancy in decay times (240â±â30âfs from PL-VIPER versus 280â±â20âfs for PC-VIPER) may be due to differing material morphologies and minor ligand effects in our FAPbBr3 NCs compared with bulk FAPbBr3. Nevertheless, these findings indicate that we monitor the same VC effect using both photocurrent and photoluminescence.
We now address alternative explanations for the emergence of this signal. We compared the IR spectra of the full FAPbBr3 and CsPbBr3 devices (Supplementary Note 1) with those of the FAPbBr3 films shown in Fig. 2 and found no substantial difference, indicating that the signal purely originates from the perovskite active layer. We can rule out an anti-Stokes Raman-like effect, in which the off-resonant visible photons are inelastically scattered from the excited vibrational state because the lifetimes of our signals are substantially shorter than the lifetime of the vibrational mode previously observed via 2D-IR spectroscopy15 or estimated from lineshape analysis (Fig. 4b). Similarly, the persistence of the VIPER signal is also too short to emerge from a vibrational sum-frequency generation (VSFG) effect, whose temporal profile is determined by the free induction decay of the vibration37,38,39. We estimate the free induction decay of the 1,720âcmâ1 mode to be ~850â870âfs, based on a lineshape analysis of the IR absorption spectrum (Supplementary Note 4), meaning that the corresponding estimated lifetime of the VSFG signal is approximately ~430âfs (half the free induction decay). This value is substantially longer than the 280âfs lifetime of our PC-VIPER and PL-VIPER signals (Supplementary Fig. 3c). Moreover, independently measured VSFG spectra of our FAPbBr3 films exhibit a negligible signal at 1,720âcmâ1 (Supplementary Note 5), and VSFG signals were also not observed in wavelength-dependent PL-VIPER control experiments (Supplementary Note 6). Collectively, these results suggest that the VIPER signal decay is controlled by some other process, rather than simply the population or dephasing of the vibrational state. Finally, sample-heating31 effects on the band edge can be discarded due to the rapidity with which the observed signals grow in (<100âfs) and dissipate (sub-picosecond; >1âns for sample-heating effects). Consequently, we conclude that vibronic coupling between the cation and electronic state of the perovskite provides the most plausible explanation for the observed VC phenomenon.
The origin of vibronic coupling
The VIPER kinetics reveal the nature of the vibronic-coupling phenomenon behind the PC-VIPER and PL-VIPER signals. The decays of both the PC-VIPER and PL-VIPER signals (Fig. 4b) are almost ten times faster than the population relaxation rate for the same mode previously observed for FAPbI3 (2.8âps) (ref. 15) and roughly three times faster than the vibrational free induction decay (Supplementary Fig. 3b), suggesting that its dynamics depend on other processes within the material. In particular, we note that the relaxation rates of our VIPER signals closely match the timescales of the rotational dynamics of the FA cation. Cation rotation, given the highly directional nature of FAâBr hydrogen bonds40, can strongly influence the interaction between the FA ions and the inorganic lattice, which determines the frontier electronic states of the perovskite. Intriguingly, the ~280âfs lifetimes of VIPER signals are comparable with the 300â400âfs âwobbling timesâ of the rotational motions of the organic cartions observed for methylammonium and FA perovskites15. This indicates that the reorientation of the organic cation may dictate the timescales over which the vibrational states of the cation and electronic states of the perovskite lattice are coupled. This is supported by previous studies highlighting the importance of hydrogen bonding on the structural dynamics of the PbBr3 sublattice41, as well as a recent 2D-IR report that finds agreement between the rate of spectral diffusion of methylammonium-containing perovskites and the faster âwobblingâ timescales of the cations42.
Identifying the mechanism of the vibronic coupling evolution should take into account the electronic structure of the perovskite, the rotational and vibrational dynamics of the FA cations and the interaction between the cations and inorganic sublattice. We anticipate that the kinetics of the VIPER signal depend on the dynamics of electronâphonon coupling, which can be affected by all of the above processes. To gain an atomistic insight into the origin of the vibronic-coupling phenomena observed in our PC-VIPER and PL-VIPER experiments, we performed a series of ab initio molecular dynamics (AIMD) simulations on a 2âÃâ2âÃâ2 perovskite supercell (Supplementary Note 7).
We first used molecular dynamics simulations to quantify the hydrogen bond dynamics and correlate them with the dynamics of vibronic coupling observed in VIPER experiments. At each time step of the simulation, we calculated the distances between the four hydrogen atoms on the âNH2 groups of FA and their nearest-neighbour Brâ ion. The dynamics of the Hâ¢â¢â¢Br bond distance predominantly consist of fluctuations about a local equilibrium value, with occasional drops in the HâBr distance that are almost immediately followed by a return to equilibrium (Supplementary Figs. 11 and 12). Previous ab initio studies have ascribed this behaviour to the stochastic formation and breakage of hydrogen bonds between the FA and surrounding PbBr3 cage41. A statistical analysis of these events yields the ensemble-averaged dynamics of hydrogen bond breakage, expressed as the evolution of the NâHâ¢â¢â¢Br separation following hydrogen bond formation (Supplementary Fig. 8). A rapid initial increase in the bond distance shortly after hydrogen bond formation accounts for much of the Hâ¢â¢â¢Br bond evolution. The dominant timescale of this evolution is ~300âfs, in good agreement with the wobbling times of other FA perovskites, demonstrating a correlation between the hydrogen bond dynamics and the rotational dynamics of the organic cation.
The complete rationalization for our experimental results is presented in Fig. 5. Figure 5aâc compares the kinetics of the experimentally obtained VIPER signal with three of the dynamic properties of the organic cation. Specifically, we compare the experimental VIPER kinetics (black dashed line) with the orientational anisotropy decay of the FA vibration in the FAPbI3 perovskite12 (Fig. 5a), the simulated dynamics of hydrogen bond breakage from AIMD (Fig. 5b) and the time-resolved cross-correlation between the PbâBr and NâHâ¢â¢â¢X bond distance, which are reported elsewhere41 (Fig. 5c). The PC-VIPER data broadly match both the experimental rotational dynamics observed via 2D-IR anisotropy decays and molecular dynamics results. In particular, the strongly negative cross-correlation (Fig. 5c) implies that a shortening of the NâHâ¢â¢â¢X bond distance is coordinated with an elongation of the PbâBr bond distance. This suggests that hydrogen bonds between the organic cation and inorganic lattice induce a distortion of the latter. Thus, a picture emerges in which the NâC=N vibration of the cation affects NâHâ¢â¢â¢X hydrogen bonding, which, in turn, may alter the electronic states of the perovskite through distortion of the inorganic cage. The effect of the NâC=N vibration on hydrogen bonding may not be that surprising since the vibrational motion of the nitrogen atoms affects the hydrogen atoms involved with hydrogen bonding. Additionally, the relative softness and anharmonicity of HOIPs, combined with the rotationally mobile and anisotropic nature of the organic cation, opens up the possibility of dynamic fluctuations in the inorganic cage driven by the organic sublattice. The reverse processâin which inorganic lattice oscillations drive cation reorientationâhas been invoked to explain differences in the rotational dynamics of the organic cation in a variety of HOIPs12,43. Some studies also suggest that hydrogen bonds between the organic cation and halide anions distort the PbX3 octahedra, indirectly influencing the materialâs optoelectronic behaviour41. We note, however, that our computational approach cannot account for the vibrational relaxation of the ν(NâC=N) mode, which is a major loss pathway for our VIPER signals.
The ab initio modelling at equilibrium is unable to evaluate the direct effect of the ν(NâC=N) dynamics of the organic cation on the electronic properties of the perovskite, as the amplitudes of the relevant mid-infrared (MIR; ~1,700âcmâ1) vibrational states are negligible at the simulated temperatures. We, therefore, modified the above approach by adjusting the atomic velocities along the normal modes corresponding to the ν(NâC=N) vibration of the FA ion, which we identify via phonon calculations. The adjustment amounts to three quanta of the ν(NâC=N) vibrational mode per supercell to simulate the IR-pulse excitation in the PC-VIPER and PL-VIPER experiments. In total, we ran ten individual trajectoriesâfive in which the ν(NâC=N) mode was stimulated, and five in which no stimulation was introduced. The representative evolution of the perovskite bandgap for one such trajectory following the stimulation of the ν(NâC=N) modes is given in Fig. 5d, and shows both slow, large amplitude fluctuations and variation on faster timescales. Fourier analysis of the bandgap dynamics reveals the involvement of multiple modes at around 100, 700 and ~1,700âcmâ1 (Fig. 5e). We assign the modes in the <280âcmâ1 low-energy band to motions of the PbBr3 octahedral cage, whereas the modes in the 300â1,000âcmâ1 region are commonly ascribed to hybrid modes of the organic cation rotations coupled to motions of the inorganic lattice44. The dominant mode is the oscillation at ~100âcmâ1, suggesting that the modulation of the bandgap is primarily driven by fluctuations of the inorganic cage. The mode at ~1,700âcmâ1 is probably the intramolecular ν(NâC=N) mode of FA, which matches well with the one we experimentally access by IR excitation in our VIPER experiments. Comparing the Fourier amplitude of the ~1,700âcmâ1 mode for trajectories with and without stimulation, we observe that the relative contribution of the ν(NâC=N) mode is strongly and selectively enhanced, highlighting its coupling to the bandgap of the perovskite. We note, however, that there are other important differences between the orientational selectivity of VIPER experiments versus our AIMD simulations arising from the polarization of the pulses that also must be considered (Supplementary Note 8).
Our results carry important implications for perovskite-based optoelectronic devices. Previous studies have emphasized the impact of the A-site cation on the electronic structure of HOIPs, inhibiting the cooldown of hot carriers45. Our findings elucidate the mechanistic picture behind this phenomenon. Moreover, we note that if high-frequency phonons can be used to stimulate sub-bandgap absorption, then the opposite pathway (electronic relaxation through intramolecular modes of the organic cation) may also be possible. Thus, the coupling of the high-frequency vibration of the cation to the electronic states in HOIPs introduces facile non-radiative pathways for carrier relaxation, which impacts the intrinsic non-radiative relaxation of photogenerated carriers. In HOIP solar cells, non-radiative losses have traditionally been the result of trap-mediated recombination, as well as losses at interfaces46. However, with the development of new defect passivation strategies, losses due to these extrinsic factors have reduced47,48, making intrinsic non-radiative recombination dominant. Our findings suggest a natural route for controlling the coupling between the organic and inorganic sublattices of HOIPs (and therefore the intrinsic non-radiative loss) by controlling the strength of cationâhalide hydrogen bond or/and the rotational mobility of the cation, in agreement with some recent findings47. Consequently, our study offers a new design guideline to perovskite device optimization that may push open-circuit-voltage (VOC) losses down to their radiative limit, substantially improving their performance.
Outlook
In conclusion, we have presented the first report of the ultrafast VC of an HOIP-based optoelectronic device. This experiment has provided access to the coupled electronic and structural dynamics of the FAPbBr3 metal halide perovskite, both as a thin film and as a full optoelectronic device. Our spectroscopic techniques, namely, PC-VIPER and PL-VIPER, demonstrate that the ν(NâC=N) stretching mode of the FA can modulate the (opto)electronic properties of FAPbBr3. An analysis of the VIPER kinetics supports a picture in which coupling between the organic and inorganic sublattices results from a stochastic sticking and unsticking of the FA ion from the inorganic cage, mediated by cationâhalide hydrogen bonding. Our results highlight the strongly dynamical nature of the coupling between the organic cation and inorganic cage and establish a direct link between this coupling and the optoelectronic performance of hybrid perovskites. The observed phenomena are potentially responsible for the reduction in the intrinsic non-radiative recombination of HOIPs, which impacts their performance as solar absorbers. Importantly, we suggest that the degree of intrinsic non-radiative recombinations can be controlled by optimizing the strength of hydrogen bonding and cation mobility. In the future, VC can be exploited to open new functionalities in ultrafast optical switches for time-division-multiplexed optical signals49 as well as a powerful tool to study electronâphonon coupling, in both perovskites and a wider array of optoelectronic systems.
Methods
Fabrication of FAPbBr3/CsPbBr3 devices
The FAPbBr3 and CsPbBr3 devices employed in the PC-VIPER experiments were prepared in the configuration displayed in Fig. 1b, employing semitransparent Ag electrodes to enable the penetration of visible and IR pulses. The fabrication of perovskite devices was carried out in a dry, nitrogen-filled glovebox with a relative humidity of 0.5%. Initially, glass/indium tin oxide (PsiOTech, 15âΩâsqâ1) substrates were sonicated at a temperature of 50â°C, first in a soap and water solution and then in a mixture of deionized water, acetone and isopropanol. Thereafter, the substrates were subjected to a 10âmin O2-plasma treatment. A 1.5âmgâmlâ1 solution of PTAA (Sigma-Aldrich) in toluene was prepared and spin coated onto the surface-treated glass/indium tin oxide substrates at 2,000âr.p.m. for 30âs; the resulting film was then annealed at 100â°C for 10âmin. Thereafter, a 0.5âmgâmlâ1 solution of poly(9,9-bis(3â²-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide (PFN-Br; Sigma-Aldrich) was spin coated onto the now-annealed PTAA film at 5,000âr.p.m. for 30âs.
To prepare the FAPbBr3 active layer, FABr (GreatCell Solar) and PbBr2 (TCI) were combined in a 1:1 molar ratio and dissolved in a 4:1 (v/v) N,N-dimethylformamide/dimethyl sulfoxide mixture, resulting in a 40âwt% solution of FAPbBr3. This solution was subsequently spin coated onto the PTAA/PFN-Br layers, initially at 1,000âr.p.m. for 12âs, followed by 5,000âr.p.m. for 28âs. In the final 3âs of spin coating, 200âµl of anisol was dispensed onto the film as an antisolvent. The resulting film was annealed at 140â°C for 20âmin.
In the case of CsPbBr3 films, a previously reported two-step sequential deposition method was employed1. The substrates as well as a 1âM solution of PbBr2 (TCI) in N,N-dimethylformamide were separately heated to 75â°C. The PbBr2 solution was then spin coated onto the PTAA/PFN-Br film at 2,500âr.p.m. for 1âmin. The resulting films were then dried for 30âmin at 75â°C. To convert PbBr2 into CsPbBr3, the film was soaked in a 15âmgâmlâ1 solution of CsBr (Sigma-Aldrich) in methanol for 10âmin at 50â°C. The films were then dried and subsequently annealed at 250â°C for 10âmin.
To apply the electron transport layers and Ag electrodes, an identical procedure was employed for both FAPbBr3 and CsPbBr3 films. A 20âmgâmlâ1 solution of [6,6]-phenyl-C61-butyric acid methyl ester (Solenne) in chlorobenzene was prepared and then passed through a 0.25âµm polytetrafluoroethylene filter to remove the residual solid particulate. The solution was then dynamically cast onto the active layers at 2,000âr.p.m. for 30âs. The film was then annealed at 100â°C for 10âmin. A bathocuprene (Sigma-Aldrich) hole-blocking layer was then spin coated onto the [6,6]-phenyl-C61-butyric acid methyl ester film from a 0.5âmgâmlâ1 bathocuprene/isopropanol solution at a speed of 4,000âr.p.m. for 30âs. After drying, silver electrodes were evaporated onto the film at a rate of 0.1 à âsâ1 to a thickness of 18âà .
Fabrication of nanocrystalline FAPbBr3 films
To produce the oleylammonium bromide (OLAmBr) precursor, 12.5âml oleylammonium was mixed with 100âml EtOh in a flask and cooled in an ice/water bath. Thereafter, 8.56âml HBr (48% aqueous solution) was added. The reaction mixture was left to react overnight under a nitrogen flow. The resulting solution was dried in a rotary evaporator and the remaining precipitate was washed multiple times with diethyl ether. The resultant white OLAmBr powder was dried under a vacuum at room temperature for several hours and then stored in a glovebox.
To synthesis the FAPbBr3 NCs, 76âmg lead(ii) acetate trihydrate (0.20âmmol) and 78âmg formamidinium acetate (0.75âmmol) were dispersed in a mixture of 8âml ODE and 2âml OAc, heated to 50â°C and then dried under a vacuum for 30âmin. Thereafter, the reaction mixture was heated to 130â°C and a separately prepared solution of 266âmg OLAmBr (0.8âmmol) in 2âml anhydrous toluene was injected into the reaction flask. To prepare the OLAmBr/toluene solution, the mixture was heated to 40â50â°C and held at this temperature for approximately 30âs, after which the reaction mixture was cooled in an ice/water bath.
To obtain purified NCs from the resulting crude solution, 16âml of methyl acetate was added and the mixture was centrifuged at 12,100âr.p.m. for 5âmin. The resulting supernatant was discarded and the remaining precipitate was redissolved in toluene (5âml). This solution was centrifuged a second time at 3,000âr.p.m. for 2âmin. In this case, the supernatant was retained for the didodecylammonium bromide treatment, and any precipitated NCs were discarded.
To treat the purified FAPbBr3 NCs with didodecylammonium bromide, 5âml toluene was added to the prepared FAPbBr3 colloidal solution as described above. Thereafter, 0.10âml of OAc and 0.54âml of didodecylammonium bromide (0.05âM in toluene) were added to 10.00âml colloidal solution of FAPbBr3 NCs; the resulting mixture was stirred for 1âh followed by precipitation with 16.00âml ethyl acetate. The resulting suspension was centrifuged at 12,100âr.p.m. for 3âmin. The precipitate was redispersed in 2.5âml toluene and this solution was additionally filtered through a 0.45âμm polytetrafluoroethylene filter.
To deposit the FAPbBr3 NCs, CaF2 substrates (12âmm diameter, 1âmm thickness; EKSMA Optics) were treated with O2 plasma to improve wetting. The concentrated NC inks were drop cast from the solution onto the cleaned substrates in a N2 atmosphere. The thickness of the thin films were determined to be ~300ânm by UVâvisible ellipsometry.
PC-VIPER and PL-VIPER experiments
The primary light source for the experiments was the output from a Ti:sapphire regenerative amplifier (Astrella, Coherent), which outputs 800ânm pulses at a repetition rate of 4âkHz, with a nominal temporal width of 35âfs. The output of the amplifier is divided and passed onto a pair of optical parametric amplifiers (OPAs; TOPAS Prime, Coherent), which produce near-infrared (NIR) signal and idler pulses in the 1,140â2,671ânm range. To prepare the MIR pulses for the pre-excitation step, the output from one OPA was passed to a custom-built difference-frequency generation rig, which uses an AgGaS2 crystal to achieve MIR pulses tunable in the 2,857â6,666ânm (1,500â3,500âcmâ1) range. In the experiments described in this Article, the difference-frequency generation was tuned to output pulses with a centre frequency of ~1,720âcmâ1, and a full-width at half-maximum of approximately 200âcmâ1; Supplementary Figs. 1 and 2 show a detailed spectrum of the pulse. The residual NIR light from the OPA was removed by means of a long-pass dielectric filter with a cut-on wavelength of 3,000ânm (LP-3000, Spectrogon).
To produce the visible pulses for the secondary electronic excitation, we made use of second-harmonic generation, using the 1,150ânm output from the second OPA and a beta barium borate crystal (BBO-0110-06H, EKSMA Optics UAB). The residual NIR light and any other unwanted light (for example, from OPA superfluorescence) was removed by means of a series of dielectric filters (Thorlabs) to yield pulses centred at ~575ânm (Fig. 2). To avoid the addition of optics that could degrade the temporal resolution of the VIPER system, the polarization of both IR pre-excitation and visible electronic excitation pulses were not altered, resulting in the pulses being parallelly polarized with respect to each another. Cross-polarization of the pulses would not be expected to provide additional structural information, as the direction(s) of the electronic and vibrational transition dipoles are both random and isotropic (both with respect to the laboratory frame of reference and with respect to one another) within the length scales probed by the visible and NIR pulses (102â103âµm).
After the initial preparation, the MIR and visible pulses were passed to the experimental setup shown in Fig. 1. The system was sealed and purged with dry air to reduce the relative humidity to below 1%. To achieve temporal resolution, the visible pulse was passed to a motorized delay stage (DDS220/M, Thorlabs), with a total travel range of ~220ânm. To achieve spectral resolution, the MIR pulse is passed to a custom-built interferometer. To accurately measure the position of the interferometer delay line, a 635ânm reference laser was also passed through the interferometer, enabling submicrometre position determination. To prevent picket fencing of the reference interferogram, the interferogram was deliberately oversampled; the approximate spacing between the adjacent sample points was 10ânm and the dwell time at each interferogram point was approximately 10âms (40 laser shots per sample point).
After the interferometer, the visible and IR beams were combined at a germanium dielectric filter (WG91050-C9, Thorlabs) and subsequently focused onto the sample. The MIR pulses were modulated at 2âkHz using an optical chopper (MC2000B-EC, Thorlabs) equipped with a 30-slot blade (MC1F30, Thorlabs). The average power of the IR and visible pulses at the sample position was approximately 300 and 50âµW, respectively. For the visible pulses, this corresponded to a pulse energy of 12.5ânJ, whereas for the MIR pulses, the power was evenly divided across the static and dynamic pulse image trains, resulting in pulse energies of 75ânJ per pulse. The focal-spot diameters of both visible and NIR beams at the sample were approximately 0.5âmm. The sample device was mounted on a closed, custom-designed sample holder, equipped with a CaF2 window under a positive nitrogen pressure for the entire experiment. To detect the photocurrent, the device and optical chopper were connected to a lock-in amplifier (MFLI, Zurich Instruments), operating at a time constant of 5âms and a sensitivity of 1âµA. The interferometer, delay lines and detection system were controlled using custom control software written with LabVIEW 2019.
The same setup was used for the PC-VIPER and PL-VIPER experiments; however, the detection system was slightly altered (Supplementary Note 3).
The resulting datasets were analysed using OriginPro (2021b) and MATLAB (R2021b). The resulting graphs were plotted using OriginPro (2021b)
AIMD simulations
We perform BornâOppenheimer AIMD with the QUANTUM ESPRESSO code50,51. A 2âÃâ2âÃâ2 supercell containing eight formula units of FAPbBr3 is chosen. The lattice constants were fully relaxed for a supercell volume of 2,025âà 3 and then fixed for the remainder of the calculations. We use the PerdewâBurkeâErnzerhof52 functional and the TkatchenkoâScheffler scheme53 for dispersive interactions. A 2âÃâ2âÃâ2 MonkhorstâPack k-point grid is used54, and the planewave cutoff energy is 50âRy. The density-functional-theory-calculated total energy is converged to 10â7âRy per cell. Spinâorbit coupling is not considered, as it does not affect the structural properties of lead halide perovskites. Equilibrium AIMD was performed in the canonical (NVT) ensemble at 300âK with velocities integrated using the Verlet algorithm with a time step of 1.5âfs. Temperature was controlled using a Berendsen thermostat55 with a time constant of 150âfs. The trajectory was equilibrated for 2âps and further 50âps of dynamics were then used for analysis. Although velocity-rescaling thermostats such as the Berendsen thermostat can sometimes incorrectly partition energy between the modes of different frequencies, they do not introduce artefacts in dynamical processes as velocity randomization thermostats are known to do56. Although thermostating introduces an additional characteristic time into the simulation, this timescale does not appear in any of the correlation properties calculated; therefore, we are confident that the computed dynamics are a real property of the system.
The resulting datasets were analysed using Python 3.10 and plotted using Matplotlib 3.5.
Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.
Data availability
Datasets for our PC-VIPER and PL-VIPER experiments, along with the trajectories and time-series bandgap dynamics from our density functional theory simulations, are available via Zenodo at https://doi.org/10.5281/zenodo.8398385.
References
van Wilderen, L. J. G. W. & Bredenbeck, J. From ultrafast structure determination to steering reactions: mixed IR/non-IR multidimensional vibrational spectroscopies. Angew. Chem. Int. Ed. 54, 11624â11640 (2015).
Delor, M. et al. Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation. Science 346, 1492â1495 (2014).
Bakulin, A. A. et al. Mode-selective vibrational modulation of charge transport in organic electronic devices. Nat. Commun. 6, 7880 (2015).
Delor, M. et al. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. Nat. Chem. 9, 1099â1104 (2017).
Delor, M. et al. On the mechanism of vibrational control of light-induced charge transfer in donorâbridgeâacceptor assemblies. Nat. Chem. 7, 689â695 (2015).
Kern-Michler, D. et al. Controlling photochemistry via isotopomers and IR pre-excitation. J. Am. Chem. Soc. 140, 926â931 (2018).
van Wilderen, L. J. G. W., Messmer, A. T. & Bredenbeck, J. Mixed IR/vis two-dimensional spectroscopy: chemical exchange beyond the vibrational lifetime and sub-ensemble selective photochemistry. Angew. Chem. Int. Ed. 53, 2667â2672 (2014).
Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391â402 (2015).
Yantara, N. et al. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 6, 4360â4364 (2015).
Zhang, Q. et al. Advances in small perovskite-based lasers. Small Methods 1, 1700163 (2017).
Liu, D. et al. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Appl. Mater. Interfaces 9, 6171â6176 (2017).
Gallop, N. P. et al. Rotational cation dynamics in metal halide perovskites: effect on phonons and material properties. J. Phys. Chem. Lett. 9, 5987â5997 (2018).
Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581â582 (1985).
Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663â3669 (2015).
Taylor, V. C. A. et al. Investigating the role of the organic cation in formamidinium lead iodide perovskite using ultrafast spectroscopy. J. Phys. Chem. Lett. 9, 895â901 (2018).
Egger, D. A. et al. What remains unexplained about the properties of halide perovskites? Adv. Mater. 30, 1800691 (2018).
Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).
Brivio, F., Butler, K. T., Walsh, A. & van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).
Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (ii) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373â6378 (1987).
Bonn, M., Miyata, K., Hendry, E. & Zhu, X. Y. Role of dielectric drag in polaron mobility in lead halide perovskites. ACS Energy Lett. 2, 2555â2562 (2017).
Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409â1413 (2016).
Davies, C. L. et al. Impact of the organic cation on the optoelectronic properties of formamidinium lead triiodide. J. Phys. Chem. Lett. 9, 4502â4511 (2018).
Gong, J. et al. Electron-rotor interaction in organic-inorganic lead iodide perovskites discovered by isotope effects. J. Phys. Chem. Lett. 7, 2879â2887 (2016).
Grechko, M., Bretschneider, S. A., Vietze, L., Kim, H. & Bonn, M. Vibrational coupling between organic and inorganic sublattices of hybrid perovskites. Angew. Chem. Int. Ed. 57, 13657â13661 (2018).
Kim, H. et al. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nat. Commun. 8, 687 (2017).
Quarti, C., Mosconi, E. & de Angelis, F. Structural and electronic properties of organo-halide hybrid perovskites from ab initio molecular dynamics. Phys. Chem. Chem. Phys. 17, 9394â9409 (2015).
Goetz, K. P., Taylor, A. D., Paulus, F. & Vaynzof, Y. Shining light on the photoluminescence properties of metal halide perovskites. Adv. Funct. Mater. 30, 1910004 (2020).
Kulbak, M., Cahen, D. & Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452â2456 (2015).
Dastidar, S., Li, S., Smolin, S. Y., Baxter, J. B. & Fafarman, A. T. Slow electron-hole recombination in lead iodide perovskites does not require a molecular dipole. ACS Energy Lett. 2, 2239â2244 (2017).
Hutter, E. M. et al. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2, 1901â1908 (2017).
Guo, P. et al. Infrared-pump electronic-probe of methylammonium lead iodide reveals electronically decoupled organic and inorganic sublattices. Nat. Commun. 10, 482 (2019).
Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J. Phys. Chem. Lett. 7, 250â258 (2016).
Mastron, J. N. & Tokmakoff, A. Fourier transform fluorescence-encoded infrared spectroscopy. J. Phys. Chem. A 122, 554â562 (2018).
Whaley-Mayda, L., Guha, A., Penwell, S. B. & Tokmakoff, A. Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity. J. Am. Chem. Soc. 143, 3060â3064 (2021).
Kucharska, E., Hanuza, J., Ciupa, A., MÄ czka, M. & Macalik, L. Vibrational properties and DFT calculations of formamidine-templated Co and Fe formates. Vib. Spectrosc. 75, 45â50 (2014).
Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).
Nihonyanagi, S., Mondal, J. A., Yamaguchi, S. & Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64, 579â603 (2013).
Lagutchev, A., Hambir, S. A. & Dlott, D. D. Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy. J. Phys. Chem. C 111, 13645â13647 (2007).
Boulesbaa, A. & Borguet, E. Capturing the ultrafast vibrational decoherence of hydrogen bonding in interfacial water. J. Phys. Chem. Lett. 7, 5080â5085 (2016).
Svane, K. L. et al. How strong is the hydrogen bond in hybrid perovskites? J. Phys. Chem. Lett. 8, 6154â6159 (2017).
Singh, H. et al. Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites. Phys. Rev. B 101, 54302 (2020).
Gallop, N. P. et al. The effect of caesium alloying on the ultrafast structural dynamics of hybrid organic-inorganic halide perovskites. J. Mater. Chem. A 10, 22408â22418 (2022).
Selig, O. et al. Organic cation rotation and immobilization in pure and mixed methylammonium lead-halide perovskites. J. Am. Chem. Soc. 139, 4068â4074 (2017).
Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051â27066 (2016).
Man, G. J. et al. A-site cation influence on the conduction band of lead bromide perovskites. Nat. Commun. 4, 3839 (2021).
Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258â267 (2020).
Dong, W. et al. Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022).
Ye, Q. et al. Stabilizing γ-CsPbI3 perovskite via phenylethylammonium for efficient solar cells with open-circuit voltage over 1.3âV. Small 16, 2005246 (2020).
Kawanishi, S. Ultrafast time-division multiplexed optical communications. In Optical Fiber Communication Conference (1998) ThN1 (1998).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. R. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984).
Basconi, J. E. & Shirts, M. R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 9, 2887 (2013).
Acknowledgements
We thank M. Pchenitchnikov, T. L. C. Jansen, D. Egger, D. Klug and D. Cahen for useful discussions. We thank O. D. Parashchuk for helping in conducting the Raman measurements. N.P.G. thanks T. Shibu for help with the preliminary VIPER measurements. K.P.G. and Y.V. thank A. D. Taylor for help with developing the fabrication procedures of the FAPbBr3 devices. D.R.M. acknowledges funding by the Imperial College London Presidentâs PhD Scholarships. N.M. and A.A.B. acknowledge support from the European Commission through the Marie SkÅodowska-Curie Actions under Horizon 2020 (Project PeroVIB, 101018002). A.A.B. is a Royal Society University Research Fellow. A.A.B. acknowledges support from Leverhulme Trust via Philip Leverhulme Prize award. This project received funding from the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (grant agreements 639750/VIBCONTROL and 714067/ENERGYMAPS). Y.V. also thanks the Deutsche Forschungsgemeinschaft (DFG) for funding the âPERFECT PVsâ project (grant no. 424216076) in the framework of SPP 2196. M.I.B. acknowledges financial support from the Swiss National Science Foundation (grant no. 200021_192308, Project Q-Light). T.T. acknowledges support from JSPS KAKENHI (grant nos. 18H05265 and 23H00292). The theoretical work (Z.D., A.M.S. and A.M.R.) was supported by the National Science Foundation, Science and Technology Center Program (IMOD), under grant no. DMR-2019444. Computational support was provided by the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy, Office of Science User Facility, located at Lawrence Berkeley National Laboratory, operated under contract no. DE-AC02-05CH11231.
Author information
Authors and Affiliations
Contributions
A.A.B. and N.P.G. conceived and designed the experiments and analysis. N.P.G. designed and constructed the PC-VIPER and PL-VIPER systems and led the writing of the paper. The PC-VIPER and PL-VIPER experiments were carried out and analysed by both N.P.G. and D.R.M. Wavelength-dependent PL-VIPER control experiments were performed by D.R.M. and N.M. K.P.G. fabricated the FAPbBr3 and CsPbBr3 devices, whereas M.B. synthesized and fabricated the FAPbBr3 NCs. W.S., S.N. and T.T. performed and interpreted the VSFG experiments. Z.D. and A.M.S. performed the first-principles density functional theory simulations and vibrational dynamics modelling. A.A.B., M.K., A.M.R. and Y.V. supervised and provided support throughout the project. All authors have commented on and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Jens Bredenbeck and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1â8 and Figs. 1â13.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the articleâs Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the articleâs Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gallop, N.P., Maslennikov, D.R., Mondal, N. et al. Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nat. Mater. 23, 88â94 (2024). https://doi.org/10.1038/s41563-023-01723-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-023-01723-w
This article is cited by
-
Organic and inorganic sublattice coupling in two-dimensional lead halide perovskites
Nature Communications (2024)
-
Nonlinear dynamic analysis of opto-electro-thermo-elastic perovskite plates
Nonlinear Dynamics (2024)