Abstract
There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050â6051 (2009). The first study of halide perovskites in solar cells.
Rühle, S. Tabulated values of the ShockleyâQueisser limit for single junction solar cells. Sol. Energy 130, 139â147 (2016).
Köster, U. Crystallization of amorphous silicon films. Phys. Status Sol. A 48, 313â321 (1978).
Moore, D. T. et al. Crystallization kinetics of organicâinorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350â2358 (2015).
Xiao, Z., Zhou, Y., Hosono, H., Kamiya, T. & Padture, N. P. Bandgap optimization of perovskite semiconductors for photovoltaic applications. Chem. Eur. J. 24, 2305â2316 (2018).
Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).
Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276â10281 (2015).
Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162â7167 (2015).
Leguy, A. M. et al. Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 8, 6317â6327 (2016).
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982â988 (2014).
Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).
Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989â1997 (2016).
Brivio, F., Butler, K. T., Walsh, A. & Van Schilfgaarde, M. Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014).
Grote, C., Ehrlich, B. & Berger, R. F. Tuning the near-gap electronic structure of tinâhalide and leadâhalide perovskites via changes in atomic layering. Phys. Rev. B 90, 205202 (2014).
Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).
Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117â1125 (2014).
Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 14, 477â485 (1926).
Stoumpos, C. C. & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48, 2791â2802 (2015).
Wang, H., Liu, X. & Zhang, Z. M. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int. J. Thermophys. 34, 213â225 (2013).
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506â514 (2014).
Rai, M., Wong, L. H. & Etgar, L. Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. J. Phys. Chem. Lett. 11, 8189â8194 (2020).
Sai, H. et al. Impact of silicon wafer thickness on photovoltaic performance of crystalline silicon heterojunction solar cells. Jpn. J. Appl. Phys. 57, 08RB10 (2018).
Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106â112 (2015).
Dâinnocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).
Shaklee, K. Ã. & Nahory, R. Valley-orbit splitting of free excitons? The absorption edge of Si. Phys. Rev. Lett. 24, 942 (1970).
Fehrenbach, G., Schäfer, W. & Ulbrich, R. Excitonic versus plasma screening in highly excited gallium arsenide. J. Lumin. 30, 154â161 (1985).
De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035â1039 (2014).
Johnson, S. & Tiedje, T. Temperature dependence of the Urbach edge in GaAs. J. Appl. Phys. 78, 5609â5613 (1995).
Stranks, S. D. et al. Electronâhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341â344 (2013).
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organicâinorganic CH3NH3PbI3. Science 342, 344â347 (2013).
Singh, S., Banappanavar, G. & Kabra, D. Correlation between charge transport length scales and dielectric relaxation time constant in hybrid halide perovskite semiconductors. ACS Energy Lett. 5, 728â735 (2020).
Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organicâinorganic tri-halide perovskites. Nat. Phys. 11, 582â587 (2015).
Yin, W. J., Shi, T. & Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653â4658 (2014).
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539â1548 (2017).
Lim, J. et al. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat. Commun. 13, 4201 (2022).
Chen, Y. et al. Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016).
Akin, S. et al. Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance. Adv. Sci. 8, 2004593 (2021).
Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418â3451 (2019).
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842â3867 (2019).
Chen, B., Wang, S., Song, Y., Li, C. & Hao, F. A critical review on the moisture stability of halide perovskite films and solar cells. Chem. Eng. J. 430, 132701 (2022).
Aristidou, N. et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017).
Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in leadâhalide perovskites. ACS Energy Lett. 4, 779â785 (2019).
Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416â1424 (2017).
Yoon, S. J., Kuno, M. & Kamat, P. V. Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2, 1507â1514 (2017).
Sánchez, S., Pfeifer, L., Vlachopoulos, N. & Hagfeldt, A. Rapid hybrid perovskite film crystallization from solution. Chem. Soc. Rev. 50, 7108â7131 (2021).
Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).
Cheng, Y. et al. Revealing the degradation and self-healing mechanisms in perovskite solar cells by sub-bandgap external quantum efficiency spectroscopy. Adv. Mater. 33, 2006170 (2021).
Siekmann, J., Ravishankar, S. & Kirchartz, T. Apparent defect densities in halide perovskite thin films and single crystals. ACS Energy Lett. 6, 3244â3251 (2021).
Ayres, J. Characterization of trapping states in polycrystalline-silicon thin film transistors by deep level transient spectroscopy. J. Appl. Phys. 74, 1787â1792 (1993).
Schricker, A. D., Davidson, F. M., Wiacek, R. J. & Korgel, B. A. Space charge limited currents and trap concentrations in GaAs nanowires. Nanotechnology 17, 2681 (2006).
Balcioglu, A., Ahrenkiel, R. & Hasoon, F. Deep-level impurities in CdTe/CdS thin-film solar cells. J. Appl. Phys. 88, 7175â7178 (2000).
Kerr, L. et al. Investigation of defect properties in Cu (In, Ga) Se2 solar cells by deep-level transient spectroscopy. Solid State Electron. 48, 1579â1586 (2004).
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). The first study on the unusual defect physics in perovskite solar cells.
Meggiolaro, D. & De Angelis, F. First-principles modeling of defects in lead halide perovskites: best practices and open issues. ACS Energy Lett. 3, 2206â2222 (2018).
Jin, H. et al. Itâs a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397â410 (2020).
Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360â366 (2016).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835â842 (1952).
Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44â60 (2020).
Zhang, X., Shen, J.-X., Turiansky, M. E. & Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971â976 (2021). This study unveiled the critical but overlooked role of hydrogen vacancies in hybrid perovskites and rationalized why FA is essential for high-efficiency perovskite solar cells.
Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702â713 (2018).
Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).
Leijtens, T. et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472â3481 (2016).
Meggiolaro, D., Mosconi, E. & De Angelis, F. Modeling the interaction of molecular iodine with MAPbI3: a probe of lead-halide perovskites defect chemistry. ACS Energy Lett. 3, 447â451 (2018).
Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800â6804 (2018).
Dunfield, S. P. et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10, 1904054 (2020).
Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489â493 (2017).
Xu, P., Chen, S., Xiang, H.-J., Gong, X.-G. & Wei, S.-H. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26, 6068â6072 (2014).
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519â522 (2015).
Huang, Y., Yin, W.-J. & He, Y. Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3. J. Phys. Chem. C 122, 1345â1350 (2018).
Shi, T. et al. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A 5, 15124â15129 (2017).
Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C 124, 6022â6027 (2020).
Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118â2127 (2015).
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54, 1791â1794 (2015).
Yuan, Y. et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1500615 (2015).
Sezen, E., Oner, S. M., Deger, C. & Yavuz, I. Defect pair formation in FAPbI3 perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 9718â9724 (2022).
Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648â654 (2018).
Ming, W., Yang, D., Li, T., Zhang, L. & Du, M. H. Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. 5, 1700662 (2018).
Domanski, K. et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306â6314 (2016).
Poindexter, J. R. et al. High tolerance to iron contamination in lead halide perovskite solar cells. ACS Nano 11, 7101â7109 (2017).
Schmidt, J. et al. in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) Part 2. 1â5 (IEEE, 2012).
Klug, M. T. et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10, 236â246 (2017).
Yavari, M. et al. How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A 7, 23838â23853 (2019).
Wu, B. et al. Discerning the surface and bulk recombination kinetics of organicâinorganic halide perovskite single crystals. Adv. Energy Mater. 6, 1600551 (2016).
Ni, Z. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352â1358 (2020). This study provides insight into the spatial distributions of trap states in perovskite single-crystalline and polycrystalline solar cells and proves that the interface trap densities are up to five orders of magnitude higher than the bulk trap densities.
Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903â2909 (2014).
Lee, J.-W. et al. Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nat. Commun. 11, 5514 (2020).
Lee, J.-W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290â302 (2017).
Heo, J. H. et al. Efficient inorganicâorganic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486â491 (2013).
Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Surface properties of CH3NH3PbI3 for perovskite solar cells. Acc. Chem. Res. 49, 554â561 (2016).
She, L., Liu, M. & Zhong, D. Atomic structures of CH3NH3PbI3 (001) surfaces. ACS Nano 10, 1126â1131 (2016).
Ohmann, R. et al. Real-space imaging of the atomic structure of organicâinorganic perovskite. J. Am. Chem. Soc. 137, 16049â16054 (2015).
Mirzehmet, A. et al. Surface termination of solution-processed CH3NH3PbI3 perovskite film examined using electron spectroscopies. Adv. Mater. 33, 2004981 (2021).
Oner, S. et al. Surface defect formation and passivation in formamidinium lead triiodide (FAPbI3) perovskite solar cell absorbers. J. Phys. Chem. Lett. 13, 324â330 (2022).
Rakita, Y., Cohen, S. R., Kedem, N. K., Hodes, G. & Cahen, D. Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Commun. 5, 623â629 (2015).
Svane, K. L. et al. How strong is the hydrogen bond in hybrid perovskites? J. Phys. Chem. Lett. 8, 6154â6159 (2017).
Ambrosio, F., Meggiolaro, D., Mosconi, E. & De Angelis, F. Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects. J. Mater. Chem. A 8, 6882â6892 (2020).
Uratani, H. & Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: a first-principles study. J. Phys. Chem. Lett. 8, 742â746 (2017).
Alberti, A. et al. Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation. Nat. Commun. 10, 2196 (2019).
Agiorgousis, M. L., Sun, Y.-Y., Zeng, H. & Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570â14575 (2014).
Sadoughi, G. et al. Observation and mediation of the presence of metallic lead in organicâinorganic perovskite films. ACS Appl. Mater. Interfaces 7, 13440â13444 (2015).
Yun, J. S. et al. Benefit of grain boundaries in organicâinorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875â880 (2015).
de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683â686 (2015).
An, Q. et al. Small grains as recombination hot spots in perovskite solar cells. Matter 4, 1683â1701 (2021).
Yin, W.-J., Chen, H., Shi, T., Wei, S.-H. & Yan, Y. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1, 1500044 (2015).
Doherty, T. A. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360â366 (2020).
Wu, X. et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089â2096 (2015).
Wang, L., McCleese, C., Kovalsky, A., Zhao, Y. & Burda, C. Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136, 12205â12208 (2014).
Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000â1004 (2014).
Zhao, Y.-C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light. Sci. Appl. 6, e16243 (2017).
Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).
Kim, G. Y. et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445â449 (2018).
Aristidou, N. et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208â8212 (2015).
Pont, S. et al. Tuning CH3NH3Pb(I1âxBrx)3 perovskite oxygen stability in thin films and solar cells. J. Mater. Chem. A 5, 9553â9560 (2017).
Bi, C., Zheng, X., Chen, B., Wei, H. & Huang, J. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2, 1400â1406 (2017).
Chen, Q. et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015).
Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408â415 (2019). This study suggests that the fluoride ions can effectively suppress the formation of halide anion and organic cation vacancies, through a unique strengthening of the chemical bonds with the surrounding lead and organic cations.
Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381â385 (2021). This work highlights the importance of pseudo-halide anion engineering for achieving high-efficiency FAPbI3 solar cells.
Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96â102 (2020).
Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).
Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). This study suggests that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negatively charged and positively charged components.
Abate, A. et al. Supramolecular halogen bond passivation of organicâinorganic halide perovskite solar cells. Nano Lett. 14, 3247â3254 (2014). The first study of supramolecular agent for defect passivation in metal halide perovskite solar cells.
Ruiz-Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19F solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645â1654 (2020).
Su, T.-S. et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980â19991 (2020).
Gao, P. et al. Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Rep. Phys. Sci. 2, 100450 (2021).
Chen, R. et al. Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules. Adv. Funct. Mater. 31, 2008760 (2021).
Krishna, A. et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 14, 5552â5562 (2021).
Masi, S. et al. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chem. Sci. 9, 3200â3208 (2018).
Zhang, H. et al. Multimodal hostâguest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021). The first study of hostâguest complexation supramolecular agent for defect passivation in perovskite solar cells.
Ge, C., Liu, X., Yang, Z., Li, H. & Dong, Q. Thermal dynamic self-healing supramolecular dopant towards efficient and stable flexible perovskite solar cells. Angew. Chem. Int. Ed. 61, e2021166 (2022).
Berhe, T. A. et al. Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323â356 (2016).
Wang, S. et al. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195 (2016).
Qin, C., Matsushima, T., Fujihara, T. & Adachi, C. Multifunctional benzoquinone additive for efficient and stable planar perovskite solar cells. Adv. Mater. 29, 1603808 (2017).
Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).
Tumen-Ulzii, G. et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv. Mater. 32, 1905035 (2020).
Wang, L. et al. A Eu3+âEu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265â270 (2019). This study proves that the europium ion pair Eu3+âEu2+ acts as the âredox shuttleâ that selectively oxidized Pb0 and reduced I0 defects simultaneously in a cyclical transition.
Zhang, Z. et al. Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy Environ. Sci. 15, 5274â5283 (2022).
Saidaminov, M. I. et al. Conventional solvent oxidizes Sn(II) in perovskite inks. ACS Energy Lett. 5, 1153â1155 (2020).
Lanzetta, L. et al. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 12, 2853 (2021).
Jokar, E., Chien, C. H., Tsai, C. M., Fathi, A. & Diau, E. W. G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 31, 1804835 (2019).
Nakamura, T. et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 11, 3008 (2020).
Song, T.-B. et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 139, 836â842 (2017).
Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn (II) oxidation in precursor ink. Nat. Energy 4, 864â873 (2019). This study suggests that metallic tin powder effectively suppresses Sn2+ oxidation in mixed PbâSn perovskite precursor inks via a comproportionation reaction.
Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294â300 (2022).
Bi, D. et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016).
Zhang, F. et al. Metastable DionâJacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71â76 (2022).
Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science 365, 473â478 (2019).
Alharbi, E. A. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019).
Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134â20142 (2020).
Ni, Z. et al. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 8, eabq8345 (2022).
Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531â534 (2022). This study highlights the importance of forming the inactive impurity phase in perovskite films for stabilizing the high-performance perovskite solar cells.
Zhang, H. et al. Excess PbI2 management via multimode supramolecular complex engineering enables high-performance perovskite solar cells. Adv. Energy Mater. 12, 2201663 (2022).
Singh, S. & Kabra, D. Influence of solvent additive on the chemical and electronic environment of wide bandgap perovskite thin films. J. Mater. Chem. C 6, 12052â12061 (2018).
Shi, Y. et al. (3-Aminopropyl)trimethoxysilane surface passivation improves perovskite solar cell performance by reducing surface recombination velocity. ACS Energy Lett. 7, 4081â4088 (2022).
Che, Y. et al. Hydrazide derivatives for defect passivation in pure CsPbI3 perovskite solar cells. Angew. Chem. Int. Ed. 61, e202205012 (2022).
Zhang, W. et al. Dual-site synergistic passivation for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12, 2202189 (2022).
Xue, Q. et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater. 28, 1707444 (2018).
Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organicâinorganic lead halide perovskites. ACS Nano 8, 9815â9821 (2014). The first study of molecular passivation in perovskite solar cells.
Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986â9992 (2016).
Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278â283 (2022).
Zhang, Z. et al. Marked passivation effect of naphthalene-1,8-dicarboximides in high-performance perovskite solar cells. Adv. Mater. 33, 2008405 (2021).
Gu, X., Xiang, W., Tian, Q. & Liu, S. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 60, 23164â23170 (2021).
Wu, W.-Q. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 5, eaav8925 (2019).
Kamarudin, M. A. et al. Suppression of charge carrier recombination in lead-free tin halide perovskite via Lewis base post-treatment. J. Phys. Chem. Lett. 10, 5277â5283 (2019).
Zhang, H. et al. Improving the stability and performance of perovskite solar cells via off-the-shelf post-device ligand treatment. Energy Environ. Sci. 11, 2253â2262 (2018).
Zhu, L. et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11, 2100529 (2021).
Zhan, S. et al. Stable 24.29%-efficiency FA0.85MA0.15PbI3 perovskite solar cells enabled by methyl haloacetateâlead dimer complex. Adv. Energy Mater. 12, 2200867 (2022).
Xiong, J. et al. Bulk restructure of perovskite films via surface passivation for high-performance solar cells. Adv. Energy Mater. 12, 2201787 (2022).
Ji, X. et al. Interfacial passivation engineering for highly efficient perovskite solar cells with a fill factor over 83%. ACS Nano 16, 11902â11911 (2022).
Guo, Z. et al. A universal method of perovskite surface passivation for CsPbX3 solar cells with VOC over 90% of the SâQ limit. Adv. Funct. Mater. 32, 2207554 (2022).
Cao, J. et al. Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. Nanoscale 7, 9443â9447 (2015).
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135â1140 (2020).
Huang, G. et al. Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells via hydrophobic ligand coordination. J. Mater. Chem. A 6, 2449â2455 (2018).
Zeng, H. et al. Improved performance and stability of perovskite solar modules by regulating interfacial ion diffusion with nonionic cross-linked 1D lead-iodide. Adv. Energy Mater. 12, 2102820 (2022).
Yang, S. et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781â5787 (2019).
Yu, R. et al. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Adv. Energy Mater. 13, 2203127 (2023).
Zhang, Z. et al. Sequential passivation for lead-free tin perovskite solar cells with high efficiency. Angew. Chem. Int. Ed. 61, e202210101 (2022).
Guo, J. et al. Indigo: a natural molecular passivator for efficient perovskite solar cells. Adv. Energy Mater. 12, 2200537 (2022).
Zhuang, X. et al. Learning from plants: lycopene additive passivation toward efficient and âfreshâ perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12, 2200614 (2022).
Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467â480 (2021).
Wang, R. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3, 1464â1477 (2019).
Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509â1513 (2019). This study suggests that rational design of passivator is a powerful strategy to mitigate the certain defects in perovskite films.
Shi, Y.-R. et al. Light-triggered sustainable defect-passivation for stable perovskite photovoltaics. Adv. Mater. 34, 2205338 (2022).
Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416â420 (2022).
Yu, Y. et al. Synergetic regulation of oriented crystallization and interfacial passivation enables 19.1% efficient wide-bandgap perovskite solar cells. Adv. Energy Mater. 12, 2201509 (2022).
Tan, S. et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew. Chem. Int. Ed. 61, e202201300 (2022).
Xiong, Z. et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34, 2106118 (2022).
Du, X. et al. Synergistic crystallization and passivation by a single molecular additive for high-performance perovskite solar cells. Adv. Mater. 34, 2204098 (2022).
Fu, S. et al. Tailoring in situ healing and stabilizing post-treatment agent for high-performance inverted CsPbI3 perovskite solar cells with efficiency of 16.67%. ACS Energy Lett. 5, 3314â3321 (2020).
Ma, K. et al. Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33, 2100791 (2021).
Chen, J. et al. Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids. Sci. Adv. 8, eabk2722 (2022).
Yu, D. et al. Quasi-2D bilayer surface passivation for high efficiency narrow bandgap perovskite solar cells. Angew. Chem. Int. Ed. 61, e202202346 (2022).
Xu, C. et al. Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. J. Mater. Chem. A 10, 9971â9980 (2022).
Liang, Z. et al. A selective targeting anchor strategy affords efficient and stable ideal-bandgap perovskite solar cells. Adv. Mater. 34, 2110241 (2022).
Zhang, K. et al. Suppressing nonradiative recombination in leadâtin perovskite solar cells through bulk and surface passivation to reduce open circuit voltage losses. ACS Energy Lett. 7, 3235â3243 (2022).
Guo, H. et al. Robust self-assembled molecular passivation for high-performance perovskite solar cells. Angew. Chem. Int. Ed. 61, e202204148 (2022).
Yang, L. et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 34, 2201681 (2022).
Wu, Y., Wang, Q., Chen, Y., Qiu, W. & Peng, Q. Stable perovskite solar cells with 25.17% efficiency enabled by improving crystallization and passivating defects synergistically. Energy Environ. Sci. 15, 4700â4709 (2022).
Wang, J. et al. An ammonium-pseudohalide ion pair for synergistic passivating surfaces in FAPbI3 perovskite solar cells. Matter 5, 2209â2224 (2022).
Liu, Y., Xiang, W., Mou, S., Zhang, H. & Liu, S. Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells. Chem. Eng. J. 447, 137515 (2022).
Yoo, J. J. et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ. Sci. 12, 2192â2199 (2019). This study highlights the critical role of solvent in surface treatments with organic ammonium salts.
Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photonics 15, 681â689 (2021).
Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460â466 (2019). This study highlights the importance of the organic halide salt PEAI, rather than the 2D-layered PEA2PbI4 perovskite, which serves as a much more effective passivator for a 3D perovskite.
Gharibzadeh, S. et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9, 1803699 (2019).
Lv, Y. et al. Hexylammonium iodide derived two-dimensional perovskite as interfacial passivation layer in efficient two-dimensional/three-dimensional perovskite solar cells. ACS Appl. Mater. Interfaces 12, 698â705 (2020).
Kim, H. et al. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 9, 1902740 (2019).
Kim, M. et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375, 302â306 (2022).
Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131â140 (2020).
Liu, Y. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem. Int. Ed. 59, 15688â15694 (2020).
Yang, S. et al. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).
Jeong, S. et al. Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11, 2102236 (2021).
Yang, B. et al. Interfacial passivation engineering of perovskite solar cells with fill factor over 82% and outstanding operational stability on nâiâp architecture. ACS Energy Lett. 6, 3916â3923 (2021).
Ma, C. et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale 8, 18309â18314 (2016).
Kim, J.-H., Kim, S.-G. & Park, N.-G. Effect of chemical bonding nature of post-treatment materials on photovoltaic performance of perovskite solar cells. ACS Energy Lett. 6, 3435â3442 (2021).
Chen, M. et al. High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS Energy Lett. 5, 2223â2230 (2020).
Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676â681 (2023). This study demonstrates that a record VOC and PCE for all-perovskite tandem can be realized by tailoring the molecular structure of organic ammonium halide.
Wu, T., Li, X., Qi, Y., Zhang, Y. & Han, L. Defect passivation for perovskite solar cells: from molecule design to device performance. ChemSusChem 14, 4354â4376 (2021).
Cho, K. T. et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11, 952â959 (2018).
Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73â78 (2022).
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444â450 (2021).
Liu, C. et al. Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nat. Commun. 12, 6394 (2021).
Zhu, H. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency. Adv. Mater. 32, 1907757 (2020).
Sutanto, A. A. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 7, 1903â1916 (2021).
Chen, R. et al. Conformal imidazolium 1D perovskite capping layer stabilized 3D perovskite films for efficient solar modules. Adv. Sci. 9, 2204017 (2022).
Xue, J. et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 371, 636â640 (2021).
Tan, S. et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605, 268â273 (2022). This study highlights the importance of anion selection in designing effective passivator for achieving long-term stable perovskite solar cells.
Gao, D. et al. Highly efficient flexible perovskite solar cells through pentylammonium acetate modification with certified efficiency of 23.35%. Adv. Mater. 35, 2206387 (2023).
Nagane, S. et al. Tetrafluoroborate-induced reduction in defect density in hybrid perovskites through halide management. Adv. Mater. 33, 2102462 (2021).
Yang, G. et al. Defect engineering in wide-bandgap perovskites for efficient perovskiteâsilicon tandem solar cells. Nat. Photon. 16, 588â594 (2022).
Yang, B. et al. Outstanding passivation effect by a mixed-salt interlayer with internal interactions in perovskite solar cells. ACS Energy Lett. 5, 3159â3167 (2020).
Tan, S. et al. Surface reconstruction of halide perovskites during post-treatment. J. Am. Chem. Soc. 143, 6781â6786 (2021).
Sidhik, S. et al. Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells. Science 377, 1425â1430 (2022).
Choi, Y. et al. A vertically oriented two-dimensional RuddlesdenâPopper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy Environ. Sci. 15, 3369â3378 (2022).
Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).
Han, T.-H. et al. Perovskiteâpolymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).
Cao, Q. et al. Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. 32, 2201036 (2022).
Cao, Q. et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021). This study proves that star-shaped polymers effectively improve charge transport and inhibit ion migration at the perovskite interface.
Wang, M. et al. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule 6, 1032â1048 (2022).
Qiu, S. et al. Biopolymer passivation for high-performance perovskite solar cells by blade coating. J. Energy Chem. 54, 45â52 (2021).
Zhang, B. et al. Multifunctional polymer as an interfacial layer for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202213478 (2022).
Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).
Sun, X. et al. Efficient inverted perovskite solar cells with low voltage loss achieved by a pyridine-based dopant-free polymer semiconductor. Angew. Chem. Int. Ed. 60, 7227â7233 (2021).
Zeng, Q. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 30, 1705393 (2018).
Meng, L. et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140, 17255â17262 (2018).
Chen, C. et al. Polyacrylonitrile-coordinated perovskite solar cell with open-circuit voltage exceeding 1.23 V. Angew. Chem. Int. Ed. 61, e202113932 (2022).
Zhao, Y. et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 32, 1907769 (2020).
Caprioglio, P. et al. Bi-functional interfaces by poly (ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14, 4508â4522 (2021).
Wang, S. et al. Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13, 5068â5079 (2020).
Sun, C. et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells. Adv. Energy Mater. 6, 1501534 (2016).
Zhang, F. et al. Polymeric, cost-effective, dopant-free hole transport materials for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 141, 19700â19707 (2019).
Zhang, L. et al. Intensive exposure of functional rings of a polymeric hole-transporting material enables efficient perovskite solar cells. Adv. Mater. 30, 1804028 (2018).
Niu, T. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30, 1706576 (2018).
Fu, Q. et al. Multifunctional two-dimensional polymers for perovskite solar cells with efficiency exceeding 24%. ACS Energy Lett. 7, 1128â1136 (2022).
Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434â437 (2022).
Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687â691 (2019).
Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497â501 (2018).
Ye, S. et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504â7512 (2017).
Wu, W.-Q. et al. Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J. Am. Chem. Soc. 142, 3989â3996 (2020).
Zhao, Y. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396â1402 (2022).
Hartono, N. T. P. et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 11, 4172 (2020).
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).
Yuan, Y. et al. Anomalous photovoltaic effect in organicâinorganic hybrid perovskite solar cells. Sci. Adv. 3, e1602164 (2017).
Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193â198 (2015).
Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organicâinorganic halide perovskite films. Energy Environ. Sci. 9, 1752â1759 (2016).
Meloni, S. et al. Ionic polarization-induced currentâvoltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).
Yang, D., Ming, W., Shi, H., Zhang, L. & Du, M.-H. Fast diffusion of native defects and impurities in perovskite solar cell material CH3NH3PbI3. Chem. Mater. 28, 4349â4357 (2016).
Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286â293 (2016). This work provides a critical overview of the progress in understanding the fundamental science on ion migration in perovskite solar cells.
Delugas, P., Caddeo, C., Filippetti, A. & Mattoni, A. Thermally activated point defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine. J. Phys. Chem. Lett. 7, 2356â2361 (2016).
Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048â10051 (2015).
Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484â30490 (2016).
Egger, D. A., Kronik, L. & Rappe, A. M. Theory of hydrogen migration in organicâinorganic halide perovskites. Angew. Chem. Int. Ed. 54, 12437â12441 (2015).
Li, Z. et al. Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10, 1234â1242 (2017).
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. & Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014).
Chen, J., Lee, D. & Park, N.-G. Stabilizing the Ag electrode and reducing JâV hysteresis through suppression of iodide migration in perovskite solar cells. ACS Appl. Mater. Interfaces 9, 36338â36349 (2017).
Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511â1515 (2014).
Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358â1364 (2018).
Tress, W. et al. Understanding the rate-dependent JâV hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995â1004 (2015).
Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613â617 (2015).
Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172â2178 (2018).
Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17, 1028â1033 (2017).
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199â1205 (2016).
Carrillo, J. et al. Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 6, 1502246 (2016).
Kim, S. et al. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 7, 1200 (2017).
Hermes, I. M., Hou, Y., Bergmann, V. W., Brabec, C. J. & Weber, S. A. L. The interplay of contact layers: how the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 9, 6249â6256 (2018).
Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).
Kato, Y. et al. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015).
Acknowledgements
This work was sponsored by the Shanghai Pujiang Program (22PJ1401200). M.G. acknowledges funding from the European Unionâs Horizon 2020 research and innovation programme, specifically the GRAPHENE Flagship Core 3 project (grant no. 881603).
Author information
Authors and Affiliations
Contributions
H.Z. and L.P. contributed equally to this work. M.G. and S.M.Z. contributed to the writing and editing of this manuscript. H.Z. and L.P. researched the literature for the article and contributed to the discussion of content and writing. J.C. contributed to the discussion and reviewing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Caofeng Pan, Dinesh Kabra and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
The National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy: https://www.nrel.gov/pv/cell-efficiency.html
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Pfeifer, L., Zakeeruddin, S.M. et al. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem 7, 632â652 (2023). https://doi.org/10.1038/s41570-023-00510-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41570-023-00510-0
This article is cited by
-
Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics
Nano Convergence (2024)
-
Amorphous (lysine)2PbI2 layer enhanced perovskite photovoltaics
Nature Communications (2024)
-
Manipulating the crystallization kinetics of halide perovskites for large-area solar modules
Communications Materials (2024)
-
Impurity-healing interface engineering for efficient perovskite submodules
Nature (2024)
-
Characterization of fully-evaporated perovskite solar cells and photodetectors under high-intensity pulsed proton irradiation
Scientific Reports (2024)