Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Total synthesis of colloidal matter

Abstract

Atoms serve as an inspiration for colloidal self-assembly, whereby building blocks can combine and confer endless functionality using a few design principles, including directionality, valence and reversible binding. Tetrahedral structures inspired by the bonding of carbon atoms have long been targeted as candidates for metamaterials and are now becoming accessible through molecular mimetic colloidal building blocks. Beyond carbon mimics, increasingly complex particles are being synthesized that can be arranged in their own periodic table and used to generate forms of matter unique to colloidal systems. This Review presents a framework to describe the synthesis of these micrometre-scale colloids, in which the fundamental constituents are either combined through interparticle reactions or transformed through intraparticle reactions, in analogy to molecules in traditional synthetic chemistry. We build on this framework to illustrate how unique particle shape and surface chemistry leads to diverse assembly routes for these colloidal building blocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Periodic table of elementary colloids.
Fig. 2: Growing simple colloids.
Fig. 3: Colloido-chemistry.
Fig. 4: Interparticle reactions.
Fig. 5: Intraparticle reactions.
Fig. 6: Colloidal interactions and targets.
Fig. 7: Molecular mimetic structures.

Similar content being viewed by others

References

  1. Luck, W., Klier, M. & Wesslau, H. Kristallisation ubermolekularer bausteine. Naturwissenschaften 50, 485–494 (1963).

    Article  CAS  Google Scholar 

  2. Poon, W. Colloids as big atoms. Science 304, 830–831 (2004).

    Article  CAS  Google Scholar 

  3. van Blaaderen, A. Chemistry: colloidal molecules and beyond. Science 301, 470–471 (2003).

    Article  Google Scholar 

  4. Cipelletti, L. & Weeks, E. R. in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media Vol. 150 (eds Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W.) 110 (Oxford Univ. Press, 2011)

  5. Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).

    Article  CAS  Google Scholar 

  6. Anderson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    Article  CAS  Google Scholar 

  7. Li, W. et al. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 49, 1955–1976 (2020).

    Article  CAS  Google Scholar 

  8. Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    Article  CAS  Google Scholar 

  9. Morphew, D. & Chakrabarti, D. Clusters of anisotropic colloidal particles: from colloidal molecules to supracolloidal structures. Curr. Opin. Colloid Interface Sci. 30, 70–80 (2017).

    Article  CAS  Google Scholar 

  10. Yang, S.-M., Kim, S.-H., Lim, J.-M. & Yi, G.-R. Synthesis and assembly of structured colloidal particles. J. Mater. Chem. 18, 2177–2190 (2008).

    Article  CAS  Google Scholar 

  11. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  12. Yin, Y. & Xia, Y. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater. 13, 267–271 (2001).

    Article  CAS  Google Scholar 

  13. Yin, Y., Lu, Y., Gates, B. & Xia, Y. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

    Article  CAS  Google Scholar 

  14. Hernandez, C. J. & Mason, T. G. Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477–4480 (2007).

    Article  CAS  Google Scholar 

  15. Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008).

    Article  CAS  Google Scholar 

  16. Sun, H.-B., Tanaka, T., Takada, K. & Kawata, S. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79, 1411–1413 (2001).

    Article  CAS  Google Scholar 

  17. Tomalia, D. A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res. 11, 1251–1310 (2009).

    Article  CAS  Google Scholar 

  18. Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new “table of elements”. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    Article  CAS  Google Scholar 

  19. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  20. Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    Article  CAS  Google Scholar 

  21. Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653–664 (2002).

    Article  CAS  Google Scholar 

  22. Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  23. Su, Z. et al. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 103, 101230 (2020).

    Article  CAS  Google Scholar 

  24. Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609–614 (2012).

    Article  CAS  Google Scholar 

  25. Sacanna, S., Rossi, L., Wouterse, A. & Philipse, A. Observation of a shape-dependent density maximum in random packings and glasses of colloidal silica ellipsoids. J. Phys. Condens. Matter 19, 376108 (2007).

    Article  CAS  Google Scholar 

  26. Rossi, L. et al. Shape-sensitive crystallization in colloidal superball fluids. Proc. Natl Acad. Sci. USA 112, 5286–5290 (2015).

    Article  CAS  Google Scholar 

  27. LaMer, V. K. & Barnes, M. D. Monodispersed hydrophobic colloidal dispersions and light scattering properties. I. Preparation and light scattering properties of monodispersed colloidal sulfur. J. Colloid Sci. 1, 71–77 (1946).

    Article  CAS  Google Scholar 

  28. Mer, V. K. L. Nucleation in phase transitions. Ind. Eng. Chem. 44, 1270–1277 (1952).

    Article  Google Scholar 

  29. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  30. Cademartiri, L., Bishop, K. J., Snyder, P. W. & Ozin, G. A. Using shape for self-assembly. Phil. Trans. R. Soc. A 370, 2824–2847 (2012).

    Article  CAS  Google Scholar 

  31. Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    Article  CAS  Google Scholar 

  32. Sacanna, S., Pine, D. J. & Yi, G.-R. Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter 9, 8096–8106 (2013).

    Article  CAS  Google Scholar 

  33. Backus, R. C. & Williams, R. C. Small spherical particles of exceptionally uniform size. J. Appl. Phys. 20, 224–225 (1949).

    Article  Google Scholar 

  34. Campbell, A. I. & Bartlett, P. Fluorescent hard-sphere polymer colloids for confocal microscopy. J. Colloid Interface Sci. 256, 325–330 (2002).

    Article  CAS  Google Scholar 

  35. Koenderink, G. H., Sacanna, S., Pathmamanoharan, C., Raşa, M. & Philipse, A. P. Preparation and properties of optically transparent aqueous dispersions of monodisperse fluorinated colloids. Langmuir 17, 6086–6093 (2001).

    Article  CAS  Google Scholar 

  36. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  37. Obey, T. M. & Vincent, B. Novel monodisperse “silicone oil”/water emulsions. J. Colloid Interface Sci. 163, 454–463 (1994).

    Article  CAS  Google Scholar 

  38. Yadavali, S., Jeong, H.-H., Lee, D. & Issadore, D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat. Commun. 9, 1222 (2018).

    Article  CAS  Google Scholar 

  39. Van Der Wel, C. et al. Preparation of colloidal organosilica spheres through spontaneous emulsification. Langmuir 33, 8174–8180 (2017).

    Article  CAS  Google Scholar 

  40. Pelton, R. & Chibante, P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 247–256 (1986).

    Article  CAS  Google Scholar 

  41. Rey, M., Fernandez-Rodriguez, M. A., Karg, M., Isa, L. & Vogel, N. Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces. Acc. Chem. Res. 53, 414–424 (2020).

    Article  CAS  Google Scholar 

  42. Grillo, F., Fernandez-Rodriguez, M. A., Antonopoulou, M.-N., Gerber, D. & Isa, L. Self-templating assembly of soft microparticles into complex tessellations. Nature 582, 219–224 (2020).

    Article  CAS  Google Scholar 

  43. Kuijk, A., Van Blaaderen, A. & Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011).

    Article  CAS  Google Scholar 

  44. Fernández-Rico, C., Yanagishima, T., Curran, A., Aarts, D. G. & Dullens, R. P. Synthesis of colloidal SU-8 polymer rods using sonication. Adv. Mater. 31, 1807514 (2019).

    Article  CAS  Google Scholar 

  45. Sau, T. K. & Rogach, A. L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22, 1781–1804 (2010).

    Article  CAS  Google Scholar 

  46. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018).

    Article  CAS  Google Scholar 

  47. Matijevic, E. Monodispersed metal (hydrous) oxides-a fascinating field of colloid science. Acc. Chem. Res. 14, 22–29 (1981).

    Article  CAS  Google Scholar 

  48. Matijević, E., Sapieszko, R. S. & Melville, J. B. Ferric hydrous oxide sols I. Monodispersed basic iron(III) sulfate particles. J. Colloid Interface Sci. 50, 567–581 (1975).

    Article  Google Scholar 

  49. Meijer, J.-M. & Rossi, L. Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter 17, 2354–2368 (2021).

    Article  CAS  Google Scholar 

  50. Cai, J. et al. Top-down fabrication of hematite mesocrystals with tunable morphologies. CrystEngComm 15, 6284–6288 (2013).

    Article  CAS  Google Scholar 

  51. Sugimoto, T., Khan, M. M. & Muramatsu, A. Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf. A Physicochem. Eng. Asp. 70, 167–169 (1993).

    Article  CAS  Google Scholar 

  52. Youssef, M., Hueckel, T., Yi, G.-R. & Sacanna, S. Shape-shifting colloids via stimulated dewetting. Nat. Commun. 7, 12216 (2016).

    Article  CAS  Google Scholar 

  53. Sindoro, M., Yanai, N., Jee, A.-Y. & Granick, S. Colloidal-sized metal–organic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459–469 (2014).

    Article  CAS  Google Scholar 

  54. Liu, X.-Y. et al. Tuning metal–organic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 20, 1774–1780 (2020).

    Article  CAS  Google Scholar 

  55. Troyano, J., Carné-Sánchez, A., Avci, C., Imaz, I. & Maspoch, D. Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev. 48, 5534–5546 (2019).

    Article  CAS  Google Scholar 

  56. Graf, C., Vossen, D. L., Imhof, A. & van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 19, 6693–6700 (2003).

    Article  CAS  Google Scholar 

  57. Perro, A., Meng, G., Fung, J. & Manoharan, V. N. Design and synthesis of model transparent aqueous colloids with optimal scattering properties. Langmuir 25, 11295–11298 (2009).

    Article  CAS  Google Scholar 

  58. Sheu, H., El-Aasser, M. & Vanderhoff, J. Phase separation in polystyrene latex interpenetrating polymer networks. J. Polym. Sci. A Polym. Chem. 28, 629–651 (1990).

    Article  CAS  Google Scholar 

  59. Perro, A. et al. A chemical synthetic route towards “colloidal molecules”. Angew. Chem. 121, 367–371 (2009).

    Article  Google Scholar 

  60. Désert, A. et al. High-yield preparation of polystyrene/silica clusters of controlled morphology. Polym. Chem. 3, 1130–1132 (2012).

    Article  CAS  Google Scholar 

  61. Park, J.-G., Forster, J. D. & Dufresne, E. R. Synthesis of colloidal particles with the symmetry of water molecules. Langmuir 25, 8903–8906 (2009).

    Article  CAS  Google Scholar 

  62. Kim, J.-W., Larsen, R. J. & Weitz, D. A. Uniform nonspherical colloidal particles with tunable shapes. Adv. Mater. 19, 2005–2009 (2007).

    Article  CAS  Google Scholar 

  63. Liu, M., Dong, F., Jackson, N. S., Ward, M. D. & Weck, M. Customized chiral colloids. J. Am. Chem. Soc. 142, 16528–16532 (2020).

    Article  CAS  Google Scholar 

  64. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  Google Scholar 

  65. Zheng, X., Liu, M., He, M., Pine, D. J. & Weck, M. Shape-shifting patchy particles. Angew. Chem. 129, 5599–5603 (2017).

    Article  Google Scholar 

  66. Zheng, X., Wang, Y., Wang, Y., Pine, D. J. & Weck, M. Thermal regulation of colloidal materials architecture through orthogonal functionalizable patchy particles. Chem. Mater. 28, 3984–3989 (2016).

    Article  CAS  Google Scholar 

  67. Datskos, P., Cullen, D. A. & Sharma, J. Step-by-step growth of complex oxide microstructures. Angew. Chem. 127, 9139–9143 (2015).

    Article  Google Scholar 

  68. Li, C. et al. Local-curvature-controlled non-epitaxial growth of hierarchical nanostructures. Angew. Chem. 130, 3834–3838 (2018).

    Article  Google Scholar 

  69. Kim, J.-H., Hwang, H. J., Oh, J. S., Sacanna, S. & Yi, G.-R. Monodisperse magnetic silica hexapods. J. Am. Chem. Soc. 140, 9230–9235 (2018).

    Article  CAS  Google Scholar 

  70. Johnson, P. M., van Kats, C. M. & van Blaaderen, A. Synthesis of colloidal silica dumbbells. Langmuir 21, 11510–11517 (2005).

    Article  CAS  Google Scholar 

  71. Zion, M. Y. B., Caba, Y., Sha, R., Seeman, N. C. & Chaikin, P. M. Mix and match—a versatile equilibrium approach for hybrid colloidal synthesis. Soft Matter 16, 4358–4365 (2020).

    Article  Google Scholar 

  72. Kraft, D. J. et al. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131, 1182–1186 (2009).

    Article  CAS  Google Scholar 

  73. Kraft, D. J., Groenewold, J. & Kegel, W. K. Colloidal molecules with well-controlled bond angles. Soft Matter 5, 3823–3826 (2009).

    Article  CAS  Google Scholar 

  74. Zhao, S., Wu, Y., Lu, W. & Liu, B. Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett. 8, 363–367 (2019).

    Article  CAS  Google Scholar 

  75. Zhang, Y. et al. Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8, 21 (2017).

    Article  CAS  Google Scholar 

  76. Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).

    Article  CAS  Google Scholar 

  77. Gong, Z., Hueckel, T., Yi, G.-R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017).

    Article  CAS  Google Scholar 

  78. Demirörs, A. F. et al. Long-ranged oppositely charged interactions for designing new types of colloidal clusters. Phys. Rev. X 5, 021012 (2015).

    Google Scholar 

  79. Vutukuri, H. R., Stiefelhagen, J., Vissers, T., Imhof, A. & van Blaaderen, A. Bonding assembled colloids without loss of colloidal stability. Adv. Mater. 24, 412–416 (2012).

    Article  CAS  Google Scholar 

  80. Islam, A., Chowdhry, B. & Snowden, M. Temperature-induced heteroflocculation in particulate colloidal dispersions. J. Phys. Chem. 99, 14205–14206 (1995).

    Article  CAS  Google Scholar 

  81. Mihut, A. M., Stenqvist, B., Lund, M., Schurtenberger, P. & Crassous, J. J. Assembling oppositely charged lock and key responsive colloids: a mesoscale analog of adaptive chemistry. Sci. Adv. 3, e1700321 (2017).

    Article  CAS  Google Scholar 

  82. Månsson, L. K. et al. Preparation of colloidal molecules with temperature-tunable interactions from oppositely charged microgel spheres. Soft Matter 15, 8512–8524 (2019).

    Article  Google Scholar 

  83. Opdam, J., Tuinier, R., Hueckel, T., Snoeren, T. J. & Sacanna, S. Selective colloidal bonds via polymer-mediated interactions. Soft Matter 16, 7438–7446 (2020).

    Article  CAS  Google Scholar 

  84. Zion, M. Y. B. et al. Self-assembled three-dimensional chiral colloidal architecture. Science 358, 633–636 (2017).

    Article  CAS  Google Scholar 

  85. Zhang, Y. et al. Multivalent, multiflavored droplets by design. Proc. Natl Acad. Sci. USA 115, 9086–9091 (2018).

    Article  CAS  Google Scholar 

  86. McMullen, A., Holmes-Cerfon, M., Sciortino, F., Grosberg, A. Y. & Brujic, J. Freely jointed polymers made of droplets. Phys. Rev. Lett. 121, 138002 (2018).

    Article  CAS  Google Scholar 

  87. Evers, C. H., Luiken, J. A., Bolhuis, P. G. & Kegel, W. K. Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534, 364–368 (2016).

    Article  CAS  Google Scholar 

  88. Halverson, J. D. & Tkachenko, A. V. DNA-programmed mesoscopic architecture. Phys. Rev. E 87, 062310 (2013).

    Article  CAS  Google Scholar 

  89. Wang, D., & Möhwald, H. Template-directed colloidal self-assembly–the route to ‘top-down’nanochemical engineering. J. Mater. Chem. 14, 459–468 (2004).

    Article  CAS  Google Scholar 

  90. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  91. Yi, G.-R. et al. Colloidal clusters of silica or polymer microspheres. Adv. Mater. 16, 1204–1208 (2004).

    Article  CAS  Google Scholar 

  92. Cho, Y.-S. et al. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968–15975 (2005).

    Article  CAS  Google Scholar 

  93. Peng, B., Smallenburg, F., Imhof, A., Dijkstra, M. & van Blaaderen, A. Colloidal clusters by using emulsions and dumbbell-shaped particles: Experiments and simulations. Angew. Chem. 125, 6841–6844 (2013).

    Article  Google Scholar 

  94. Yi, G.-R. et al. Generation of uniform photonic balls by template-assisted colloidal crystallization. Synth. Met. 139, 803–806 (2003).

    Article  CAS  Google Scholar 

  95. Wang, J. et al. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 9, 5259 (2018).

    Article  CAS  Google Scholar 

  96. Ouhajji, S. et al. Wet-chemical synthesis of chiral colloids. ACS Nano 12, 12089–12095 (2018).

    Article  CAS  Google Scholar 

  97. McGinley, J. T., Jenkins, I., Sinno, T. & Crocker, J. C. Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions. Soft Matter 9, 9119–9128 (2013).

    Article  CAS  Google Scholar 

  98. McGinley, J. T., Wang, Y., Jenkins, I. C., Sinno, T. & Crocker, J. C. Crystal-templated colloidal clusters exhibit directional DNA interactions. ACS Nano 9, 10817–10825 (2015).

    Article  CAS  Google Scholar 

  99. Yuan, Q. et al. Synthesis of a colloidal molecule from soft microgel spheres. ACS Macro Lett. 5, 565–568 (2016).

    Article  CAS  Google Scholar 

  100. Yao, L., Li, Q., Guan, Y., Zhu, X. & Zhang, Y. Tetrahedral, octahedral, and triangular dipyramidal microgel clusters with thermosensitivity fabricated from binary colloidal crystals template and thiol–ene reaction. ACS Macro Lett. 7, 80–84 (2018).

    Article  CAS  Google Scholar 

  101. Keville, K., Franses, E. & Caruthers, J. Preparation and characterization of monodisperse polymer microspheroids. J. Colloid Interface Sci. 144, 103–126 (1991).

    Article  CAS  Google Scholar 

  102. Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901–11904 (2007).

    Article  CAS  Google Scholar 

  103. Yoo, J.-W. & Mitragotri, S. Polymer particles that switch shape in response to a stimulus. Proc. Natl Acad. Sci. USA 107, 11205–11210 (2010).

    Article  CAS  Google Scholar 

  104. Wang, H., Li, B., Yodh, A. G. & Zhang, Z. Stimuli-responsive shape switching of polymer colloids by temperature-sensitive absorption of solvent. Angew. Chem. 128, 10106–10109 (2016).

    Article  Google Scholar 

  105. Fernández-Rico, C. et al. Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases. Science 369, 950–955 (2020).

    Article  CAS  Google Scholar 

  106. Chevalier, Y. et al. Film formation with latex particles. Colloid Polym. Sci. 270, 806–821 (1992).

    Article  CAS  Google Scholar 

  107. Sun, Z. et al. Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips. Langmuir 21, 8987–8991 (2005).

    Article  CAS  Google Scholar 

  108. Deng, Y. et al. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. J. Mater. Chem. 18, 408–415 (2008).

    Article  CAS  Google Scholar 

  109. Vutukuri, H. R., Imhof, A. & Van Blaaderen, A. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angew. Chem. 126, 14050–14054 (2014).

    Article  Google Scholar 

  110. Wang, Y., McGinley, J. T. & Crocker, J. C. Dimpled polyhedral colloids formed by colloidal crystal templating. Langmuir 33, 3080–3087 (2017).

    Article  CAS  Google Scholar 

  111. Hueckel, T. & Sacanna, S. Mix-and-melt colloidal engineering. ACS Nano 12, 3533–3540 (2018).

    Article  CAS  Google Scholar 

  112. Liu, M., Zheng, X., Dong, F., Ward, M. D. & Weck, M. Reversible morphology switching of colloidal particles. Chem. Mater. 30, 6903–6907 (2018).

    Article  CAS  Google Scholar 

  113. Kim, S.-H. et al. Synthesis and assembly of colloidal particles with sticky dimples. J. Am. Chem. Soc. 134, 16115–16118 (2012).

    Article  CAS  Google Scholar 

  114. Chen, W.-H., Tu, F., Bradley, L. C. & Lee, D. Shape-tunable synthesis of sub-micrometer lens-shaped particles via seeded emulsion polymerization. Chem. Mater. 29, 2685–2688 (2017).

    Article  CAS  Google Scholar 

  115. Tanaka, T., Komatsu, Y., Fujibayashi, T., Minami, H. & Okubo, M. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles. Langmuir 26, 3848–3853 (2010).

    Article  CAS  Google Scholar 

  116. Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).

    Article  CAS  Google Scholar 

  117. Zoldesi, C. I., van Walree, C. A. & Imhof, A. Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir 22, 4343–4352 (2006).

    Article  CAS  Google Scholar 

  118. Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

    Article  CAS  Google Scholar 

  119. Wang, Y. et al. Three-dimensional lock and key colloids. J. Am. Chem. Soc. 136, 6866–6869 (2014).

    Article  CAS  Google Scholar 

  120. Désert, A. et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem. Int. Ed. 52, 11068–11072 (2013).

    Article  CAS  Google Scholar 

  121. Park, J.-G. et al. Photonic-crystal hydrogels with a rapidly tunable stop band and high reflectivity across the visible. Opt. Mater. Express 7, 253–263 (2017).

    Article  CAS  Google Scholar 

  122. Liu, P. et al. Self-assembled colloidal arrays for structural color. Nanoscale Adv. 1, 1672–1685 (2019).

    Article  CAS  Google Scholar 

  123. Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912–922 (2018).

    Article  CAS  Google Scholar 

  124. Okubo, M., Kobayashi, H., Huang, C., Miyanaga, E. & Suzuki, T. Water absorption behavior of polystyrene particles prepared by emulsion polymerization with nonionic emulsifiers and innovative easy synthesis of hollow particles. Langmuir 33, 3468–3475 (2017).

    Article  CAS  Google Scholar 

  125. Shi, H., Huang, C., Liu, X. & Okubo, M. Role of osmotic pressure for the formation of sub-micrometer-sized, hollow polystyrene particles by heat treatment in aqueous dispersed systems. Langmuir 35, 12150–12157 (2019).

    Article  CAS  Google Scholar 

  126. Sacanna, S. & Hueckel, T. Self-inflating microcapsules. US Patent 15/877,213 (2018).

  127. Ramli, R. A. Hollow polymer particles: a review. RSC Adv. 7, 52632–52650 (2017).

    Article  CAS  Google Scholar 

  128. Quilliet, C., Zoldesi, C., Riera, C., Van Blaaderen, A. & Imhof, A. Anisotropic colloids through non-trivial buckling. Eur. Phys. J. E Soft Matter 27, 13–20 (2008).

    Article  CAS  Google Scholar 

  129. Knoche, S. & Kierfeld, J. Buckling of spherical capsules. Phys. Rev. E 84, 046608 (2011).

    Article  CAS  Google Scholar 

  130. Knoche, S. & Kierfeld, J. Osmotic buckling of spherical capsules. Soft Matter 10, 8358–8369 (2014).

    Article  CAS  Google Scholar 

  131. Sacanna, S., Irvine, W., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  Google Scholar 

  132. Sacanna, S., Irvine, W. T., Rossi, L. & Pine, D. J. Lock and key colloids through polymerization-induced buckling of monodisperse silicon oil droplets. Soft Matter 7, 1631–1634 (2011).

    Article  CAS  Google Scholar 

  133. Nguyen, T. D., Jankowski, E. & Glotzer, S. C. Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 5, 8892–8903 (2011).

    Article  CAS  Google Scholar 

  134. Meester, V., Verweij, R. W., van der Wel, C. & Kraft, D. J. Colloidal recycling: reconfiguration of random aggregates into patchy particles. ACS Nano 10, 4322–4329 (2016).

    Article  CAS  Google Scholar 

  135. Marin, O. et al. Self-faceting of emulsion droplets as a route to solid icosahedra and other polyhedra. J. Colloid Interface Sci. 538, 541–545 (2019).

    Article  CAS  Google Scholar 

  136. Liber, S. R. et al. Polyhedral water droplets: shape transitions and mechanism. J. Am. Chem. Soc. 142, 8672–8678 (2020).

    Article  CAS  Google Scholar 

  137. Diaz, J. A., Oh, J. S., Yi, G.-R. & Pine, D. J. Photo-printing of faceted DNA patchy particles. Proc. Natl Acad. Sci. USA 117, 10645–10653 (2020).

    Article  CAS  Google Scholar 

  138. Go, D., Kodger, T. E., Sprakel, J. & Kuehne, A. J. Programmable co-assembly of oppositely charged microgels. Soft Matter 10, 8060–8065 (2014).

    Article  CAS  Google Scholar 

  139. Elsesser, M. T. & Hollingsworth, A. D. Revisiting the synthesis of a well-known comb-graft copolymer stabilizer and its application to the dispersion polymerization of poly(methyl methacrylate) in organic media. Langmuir 26, 17989–17996 (2010).

    Article  CAS  Google Scholar 

  140. Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487–490 (2020).

    Article  CAS  Google Scholar 

  141. Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008 (2016).

    Article  CAS  Google Scholar 

  142. Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article  CAS  Google Scholar 

  143. Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006).

    Article  CAS  Google Scholar 

  144. Moon, J. et al. DNA-coated microspheres and their colloidal superstructures. Macromol. Res. 26, 1085–1094 (2018).

    Article  CAS  Google Scholar 

  145. Leunissen, M. E. et al. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 5, 2422–2430 (2009).

    Article  CAS  Google Scholar 

  146. Lan, Y., Wu, Y., Karas, A. & Scherman, O. A. Photoresponsive hybrid raspberry-like colloids based on cucurbit[8]uril host–guest interactions. Angew. Chem. Int. Ed. 53, 2166–2169 (2014).

    Article  CAS  Google Scholar 

  147. Han, K. et al. Social self-sorting of colloidal families in co-assembling microgel systems. Angew. Chem. 129, 2208–2214 (2017).

    Article  Google Scholar 

  148. Wang, Y. et al. Patchy particle self-assembly via metal coordination. J. Am. Chem. Soc. 135, 14064–14067 (2013).

    Article  CAS  Google Scholar 

  149. Pusey, P. N. & Van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    Article  CAS  Google Scholar 

  150. Bartlett, P., Ottewill, R. & Pusey, P. Superlattice formation in binary mixtures of hard-sphere colloids. Phys. Rev. Lett. 68, 3801 (1992).

    Article  CAS  Google Scholar 

  151. Roller, J., Geiger, J. D., Voggenreiter, M., Meijer, J.-M. & Zumbusch, A. Formation of nematic order in 3D systems of hard colloidal ellipsoids. Soft Matter 16, 1021–1028 (2020).

    Article  CAS  Google Scholar 

  152. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    Article  CAS  Google Scholar 

  153. van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931–940 (2014).

    Article  CAS  Google Scholar 

  154. Harper, E. S., van Anders, G. & Glotzer, S. C. The entropic bond in colloidal crystals. Proc. Natl Acad. Sci. USA 116, 16703–16710 (2019).

    Article  CAS  Google Scholar 

  155. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958).

    Article  CAS  Google Scholar 

  156. Zhao, K. & Mason, T. G. Directing colloidal self-assembly through roughness-controlled depletion attractions. Phys. Rev. Lett. 99, 268301 (2007).

    Article  CAS  Google Scholar 

  157. Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787–10792 (2012).

    Article  CAS  Google Scholar 

  158. Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable assembly of hybrid colloids induced by regioselective depletion. Nat. Mater. 19, 1354–1361 (2020).

    Article  CAS  Google Scholar 

  159. Tigges, T. & Walther, A. Hierarchical self-assembly of 3D-printed lock-and-key colloids through shape recognition. Angew. Chem. Int. Ed. 55, 11261–11265 (2016).

    Article  CAS  Google Scholar 

  160. Liljeström, V., Chen, C., Dommersnes, P., Fossum, J. O. & Gröschel, A. H. Active structuring of colloids through field-driven self-assembly. Curr. Opin. Colloid Interface Sci. 40, 25–41 (2019).

    Article  CAS  Google Scholar 

  161. Lumsdon, S. O., Kaler, E. W., Williams, J. P. & Velev, O. D. Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl. Phys. Lett. 82, 949–951 (2003).

    Article  CAS  Google Scholar 

  162. Crassous, J. J. et al. Field-induced assembly of colloidal ellipsoids into well-defined microtubules. Nat. Commun. 5, 5516 (2014).

    Article  CAS  Google Scholar 

  163. Gangwal, S., Cayre, O. J. & Velev, O. D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir 24, 13312–13320 (2008).

    Article  CAS  Google Scholar 

  164. Song, P. et al. Patchy particle packing under electric fields. J. Am. Chem. Soc. 137, 3069–3075 (2015).

    Article  CAS  Google Scholar 

  165. Vutukuri, H. R. et al. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew. Chem. 124, 11411–11415 (2012).

    Article  Google Scholar 

  166. Sacanna, S., Rossi, L. & Pine, D. J. Magnetic click colloidal assembly. J. Am. Chem. Soc. 134, 6112–6115 (2012).

    Article  CAS  Google Scholar 

  167. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380–382 (2008).

    Article  CAS  Google Scholar 

  168. Skjeltorp, A. T. One- and two-dimensional crystallization of magnetic holes. Phys. Rev. Lett. 51, 2306 (1983).

    Article  CAS  Google Scholar 

  169. Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–1002 (2009).

    Article  CAS  Google Scholar 

  170. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

    Article  CAS  Google Scholar 

  171. Nguyen, V., Dang, M., Nguyen, T. & Schall, P. Critical Casimir forces for colloidal assembly. J. Phys. Condens. Matter 28, 043001 (2016).

    Article  CAS  Google Scholar 

  172. Nguyen, T. A. et al. Switching colloidal superstructures by critical Casimir forces. Adv. Mater. 29, 1700819 (2017).

    Article  CAS  Google Scholar 

  173. Muševič, I. Liquid Crystal Colloids (Springer, 2017).

  174. Loudet, J.-C., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407, 611–613 (2000).

    Article  CAS  Google Scholar 

  175. Lapointe, C. P., Mason, T. G. & Smalyukh, I. I. Shape-controlled colloidal interactions in nematic liquid crystals. Science 326, 1083–1086 (2009).

    Article  CAS  Google Scholar 

  176. Yuan, Y., Abuhaimed, G. N., Liu, Q. & Smalyukh, I. I. Self-assembled nematic colloidal motors powered by light. Nat. Commun. 9, 5040 (2018).

    Article  CAS  Google Scholar 

  177. Van Megen, W. & Underwood, S. Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E 49, 4206 (1994).

    Article  Google Scholar 

  178. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  CAS  Google Scholar 

  179. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

    Article  CAS  Google Scholar 

  180. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

    Article  Google Scholar 

  181. Nagamanasa, K. H., Gokhale, S., Sood, A. & Ganapathy, R. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11, 403–408 (2015).

    Article  CAS  Google Scholar 

  182. Gokhale, S., Nagamanasa, K. H., Ganapathy, R. & Sood, A. Growing dynamical facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 4685 (2014).

    Article  CAS  Google Scholar 

  183. Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556–561 (2008).

    Article  CAS  Google Scholar 

  184. Kim, S.-H. et al. Inverse photonic glasses by packing bidisperse hollow microspheres with uniform cores. ACS Appl. Mater. Interfaces 9, 24155–24160 (2017).

    Article  CAS  Google Scholar 

  185. García, P. D., Sapienza, R., Blanco, Á. & López, C. Photonic glass: a novel random material for light. Adv. Mater. 19, 2597–2602 (2007).

    Article  CAS  Google Scholar 

  186. Donev, A. et al. Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004).

    Article  CAS  Google Scholar 

  187. Yunker, P. J. et al. Rotational and translational phonon modes in glasses composed of ellipsoidal particles. Phys. Rev. E 83, 011403 (2011).

    Article  Google Scholar 

  188. Kaufman, L. J. Heterogeneity in single-molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 64, 177–200 (2013).

    Article  CAS  Google Scholar 

  189. Edmond, K. V., Elsesser, M. T., Hunter, G. L., Pine, D. J. & Weeks, E. R. Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proc. Natl Acad. Sci. USA 109, 17891–17896 (2012).

    Article  CAS  Google Scholar 

  190. Ediger, M. D. Perspective: Highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).

    Article  CAS  Google Scholar 

  191. Hong, L., Cacciuto, A., Luijten, E. & Granick, S. Clusters of amphiphilic colloidal spheres. Langmuir 24, 621–625 (2008).

    Article  CAS  Google Scholar 

  192. Oh, J. S., Lee, S., Glotzer, S. C., Yi, G.-R. & Pine, D. J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 10, 3936 (2019).

    Article  CAS  Google Scholar 

  193. Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

    Article  CAS  Google Scholar 

  194. Yu, C., Zhang, J. & Granick, S. Selective Janus particle assembly at tipping points of thermally-switched wetting. Angew. Chem. Int. Ed. 53, 4364–4367 (2014).

    Article  CAS  Google Scholar 

  195. Kang, C. & Honciuc, A. Influence of geometries on the assembly of snowman-shaped Janus nanoparticles. ACS Nano 12, 3741–3750 (2018).

    Article  CAS  Google Scholar 

  196. Sciortino, F., Giacometti, A. & Pastore, G. Phase diagram of Janus particles. Phys. Rev. Lett. 103, 237801 (2009).

    Article  CAS  Google Scholar 

  197. Li, M., Huang, X., Tang, T. D. & Mann, S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol. 22, 1–11 (2014).

    Article  CAS  Google Scholar 

  198. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  199. Bartlett, P. & Campbell, A. I. Three-dimensional binary superlattices of oppositely charged colloids. Phys. Rev. Lett. 95, 128302 (2005).

    Article  CAS  Google Scholar 

  200. Hynninen, A.-P., Thijssen, J. H., Vermolen, E. C., Dijkstra, M. & Van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007).

    Article  CAS  Google Scholar 

  201. Ducrot, E., He, M., Yi, G.-R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017).

    Article  CAS  Google Scholar 

  202. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).

    Article  CAS  Google Scholar 

  203. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  Google Scholar 

  204. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    Article  CAS  Google Scholar 

  205. Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173 (2017).

    Article  CAS  Google Scholar 

  206. Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005).

    Article  CAS  Google Scholar 

  207. He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article  CAS  Google Scholar 

  208. Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Colloquium: Toward living matter with colloidal particles. Rev. Mod. Phys. 89, 031001 (2017).

    Article  Google Scholar 

  209. Hagan, M. F. & Grason, G. M. Equilibrium mechanisms of self-limiting assembly. Preprint at arXiv https://arxiv.org/abs/2007.01927 (2020).

  210. Jacobs, W. M. & Frenkel, D. Self-assembly of structures with addressable complexity. J. Am. Chem. Soc. 138, 2457–2467 (2016).

    Article  CAS  Google Scholar 

  211. Fodor, E. & Marchetti, M. C. The statistical physics of active matter: from self-catalytic colloids to living cells. Phys. A Stat. Mech. Appl. 504, 106–120 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Research Office under award number W911NF-21-1-0011.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Theodore Hueckel or Stefano Sacanna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks E. Duguet, D. Kraft and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hueckel, T., Hocky, G.M. & Sacanna, S. Total synthesis of colloidal matter. Nat Rev Mater 6, 1053–1069 (2021). https://doi.org/10.1038/s41578-021-00323-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00323-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing