Abstract
Atoms serve as an inspiration for colloidal self-assembly, whereby building blocks can combine and confer endless functionality using a few design principles, including directionality, valence and reversible binding. Tetrahedral structures inspired by the bonding of carbon atoms have long been targeted as candidates for metamaterials and are now becoming accessible through molecular mimetic colloidal building blocks. Beyond carbon mimics, increasingly complex particles are being synthesized that can be arranged in their own periodic table and used to generate forms of matter unique to colloidal systems. This Review presents a framework to describe the synthesis of these micrometre-scale colloids, in which the fundamental constituents are either combined through interparticle reactions or transformed through intraparticle reactions, in analogy to molecules in traditional synthetic chemistry. We build on this framework to illustrate how unique particle shape and surface chemistry leads to diverse assembly routes for these colloidal building blocks.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Luck, W., Klier, M. & Wesslau, H. Kristallisation ubermolekularer bausteine. Naturwissenschaften 50, 485â494 (1963).
Poon, W. Colloids as big atoms. Science 304, 830â831 (2004).
van Blaaderen, A. Chemistry: colloidal molecules and beyond. Science 301, 470â471 (2003).
Cipelletti, L. & Weeks, E. R. in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media Vol. 150 (eds Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W.) 110 (Oxford Univ. Press, 2011)
Li, B., Zhou, D. & Han, Y. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).
Anderson, V. J. & Lekkerkerker, H. N. Insights into phase transition kinetics from colloid science. Nature 416, 811â815 (2002).
Li, W. et al. Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 49, 1955â1976 (2020).
Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360â388 (2011).
Morphew, D. & Chakrabarti, D. Clusters of anisotropic colloidal particles: from colloidal molecules to supracolloidal structures. Curr. Opin. Colloid Interface Sci. 30, 70â80 (2017).
Yang, S.-M., Kim, S.-H., Lim, J.-M. & Yi, G.-R. Synthesis and assembly of structured colloidal particles. J. Mater. Chem. 18, 2177â2190 (2008).
Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381â384 (2011).
Yin, Y. & Xia, Y. Self-assembly of monodispersed spherical colloids into complex aggregates with well-defined sizes, shapes, and structures. Adv. Mater. 13, 267â271 (2001).
Yin, Y., Lu, Y., Gates, B. & Xia, Y. Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718â8729 (2001).
Hernandez, C. J. & Mason, T. G. Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles. J. Phys. Chem. C 111, 4477â4480 (2007).
Shah, R. K. et al. Designer emulsions using microfluidics. Mater. Today 11, 18â27 (2008).
Sun, H.-B., Tanaka, T., Takada, K. & Kawata, S. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79, 1411â1413 (2001).
Tomalia, D. A. In quest of a systematic framework for unifying and defining nanoscience. J. Nanopart. Res. 11, 1251â1310 (2009).
Macfarlane, R. J., OâBrien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new âtable of elementsâ. Angew. Chem. Int. Ed. 52, 5688â5698 (2013).
Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220â11289 (2016).
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389â458 (2010).
Rogach, A. L. et al. Organization of matter on different size scales: monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 12, 653â664 (2002).
Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600â1630 (2009).
Su, Z. et al. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: a molecular LEGO approach. Prog. Polym. Sci. 103, 101230 (2020).
Damasceno, P. F., Engel, M. & Glotzer, S. C. Crystalline assemblies and densest packings of a family of truncated tetrahedra and the role of directional entropic forces. ACS Nano 6, 609â614 (2012).
Sacanna, S., Rossi, L., Wouterse, A. & Philipse, A. Observation of a shape-dependent density maximum in random packings and glasses of colloidal silica ellipsoids. J. Phys. Condens. Matter 19, 376108 (2007).
Rossi, L. et al. Shape-sensitive crystallization in colloidal superball fluids. Proc. Natl Acad. Sci. USA 112, 5286â5290 (2015).
LaMer, V. K. & Barnes, M. D. Monodispersed hydrophobic colloidal dispersions and light scattering properties. I. Preparation and light scattering properties of monodispersed colloidal sulfur. J. Colloid Sci. 1, 71â77 (1946).
Mer, V. K. L. Nucleation in phase transitions. Ind. Eng. Chem. 44, 1270â1277 (1952).
Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557â562 (2007).
Cademartiri, L., Bishop, K. J., Snyder, P. W. & Ozin, G. A. Using shape for self-assembly. Phil. Trans. R. Soc. A 370, 2824â2847 (2012).
Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96â105 (2011).
Sacanna, S., Pine, D. J. & Yi, G.-R. Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter 9, 8096â8106 (2013).
Backus, R. C. & Williams, R. C. Small spherical particles of exceptionally uniform size. J. Appl. Phys. 20, 224â225 (1949).
Campbell, A. I. & Bartlett, P. Fluorescent hard-sphere polymer colloids for confocal microscopy. J. Colloid Interface Sci. 256, 325â330 (2002).
Koenderink, G. H., Sacanna, S., Pathmamanoharan, C., RaÅa, M. & Philipse, A. P. Preparation and properties of optically transparent aqueous dispersions of monodisperse fluorinated colloids. Langmuir 17, 6086â6093 (2001).
Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62â69 (1968).
Obey, T. M. & Vincent, B. Novel monodisperse âsilicone oilâ/water emulsions. J. Colloid Interface Sci. 163, 454â463 (1994).
Yadavali, S., Jeong, H.-H., Lee, D. & Issadore, D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat. Commun. 9, 1222 (2018).
Van Der Wel, C. et al. Preparation of colloidal organosilica spheres through spontaneous emulsification. Langmuir 33, 8174â8180 (2017).
Pelton, R. & Chibante, P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf. 20, 247â256 (1986).
Rey, M., Fernandez-Rodriguez, M. A., Karg, M., Isa, L. & Vogel, N. Poly-N-isopropylacrylamide nanogels and microgels at fluid interfaces. Acc. Chem. Res. 53, 414â424 (2020).
Grillo, F., Fernandez-Rodriguez, M. A., Antonopoulou, M.-N., Gerber, D. & Isa, L. Self-templating assembly of soft microparticles into complex tessellations. Nature 582, 219â224 (2020).
Kuijk, A., Van Blaaderen, A. & Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346â2349 (2011).
Fernández-Rico, C., Yanagishima, T., Curran, A., Aarts, D. G. & Dullens, R. P. Synthesis of colloidal SU-8 polymer rods using sonication. Adv. Mater. 31, 1807514 (2019).
Sau, T. K. & Rogach, A. L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater. 22, 1781â1804 (2010).
Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360â365 (2018).
Matijevic, E. Monodispersed metal (hydrous) oxides-a fascinating field of colloid science. Acc. Chem. Res. 14, 22â29 (1981).
MatijeviÄ, E., Sapieszko, R. S. & Melville, J. B. Ferric hydrous oxide sols I. Monodispersed basic iron(III) sulfate particles. J. Colloid Interface Sci. 50, 567â581 (1975).
Meijer, J.-M. & Rossi, L. Preparation, properties, and applications of magnetic hematite microparticles. Soft Matter 17, 2354â2368 (2021).
Cai, J. et al. Top-down fabrication of hematite mesocrystals with tunable morphologies. CrystEngComm 15, 6284â6288 (2013).
Sugimoto, T., Khan, M. M. & Muramatsu, A. Preparation of monodisperse peanut-type α-Fe2O3 particles from condensed ferric hydroxide gel. Colloids Surf. A Physicochem. Eng. Asp. 70, 167â169 (1993).
Youssef, M., Hueckel, T., Yi, G.-R. & Sacanna, S. Shape-shifting colloids via stimulated dewetting. Nat. Commun. 7, 12216 (2016).
Sindoro, M., Yanai, N., Jee, A.-Y. & Granick, S. Colloidal-sized metalâorganic frameworks: synthesis and applications. Acc. Chem. Res. 47, 459â469 (2014).
Liu, X.-Y. et al. Tuning metalâorganic framework nanocrystal shape through facet-dependent coordination. Nano Lett. 20, 1774â1780 (2020).
Troyano, J., Carné-Sánchez, A., Avci, C., Imaz, I. & Maspoch, D. Colloidal metalâorganic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev. 48, 5534â5546 (2019).
Graf, C., Vossen, D. L., Imhof, A. & van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 19, 6693â6700 (2003).
Perro, A., Meng, G., Fung, J. & Manoharan, V. N. Design and synthesis of model transparent aqueous colloids with optimal scattering properties. Langmuir 25, 11295â11298 (2009).
Sheu, H., El-Aasser, M. & Vanderhoff, J. Phase separation in polystyrene latex interpenetrating polymer networks. J. Polym. Sci. A Polym. Chem. 28, 629â651 (1990).
Perro, A. et al. A chemical synthetic route towards âcolloidal moleculesâ. Angew. Chem. 121, 367â371 (2009).
Désert, A. et al. High-yield preparation of polystyrene/silica clusters of controlled morphology. Polym. Chem. 3, 1130â1132 (2012).
Park, J.-G., Forster, J. D. & Dufresne, E. R. Synthesis of colloidal particles with the symmetry of water molecules. Langmuir 25, 8903â8906 (2009).
Kim, J.-W., Larsen, R. J. & Weitz, D. A. Uniform nonspherical colloidal particles with tunable shapes. Adv. Mater. 19, 2005â2009 (2007).
Liu, M., Dong, F., Jackson, N. S., Ward, M. D. & Weck, M. Customized chiral colloids. J. Am. Chem. Soc. 142, 16528â16532 (2020).
Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51â55 (2012).
Zheng, X., Liu, M., He, M., Pine, D. J. & Weck, M. Shape-shifting patchy particles. Angew. Chem. 129, 5599â5603 (2017).
Zheng, X., Wang, Y., Wang, Y., Pine, D. J. & Weck, M. Thermal regulation of colloidal materials architecture through orthogonal functionalizable patchy particles. Chem. Mater. 28, 3984â3989 (2016).
Datskos, P., Cullen, D. A. & Sharma, J. Step-by-step growth of complex oxide microstructures. Angew. Chem. 127, 9139â9143 (2015).
Li, C. et al. Local-curvature-controlled non-epitaxial growth of hierarchical nanostructures. Angew. Chem. 130, 3834â3838 (2018).
Kim, J.-H., Hwang, H. J., Oh, J. S., Sacanna, S. & Yi, G.-R. Monodisperse magnetic silica hexapods. J. Am. Chem. Soc. 140, 9230â9235 (2018).
Johnson, P. M., van Kats, C. M. & van Blaaderen, A. Synthesis of colloidal silica dumbbells. Langmuir 21, 11510â11517 (2005).
Zion, M. Y. B., Caba, Y., Sha, R., Seeman, N. C. & Chaikin, P. M. Mix and matchâa versatile equilibrium approach for hybrid colloidal synthesis. Soft Matter 16, 4358â4365 (2020).
Kraft, D. J. et al. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131, 1182â1186 (2009).
Kraft, D. J., Groenewold, J. & Kegel, W. K. Colloidal molecules with well-controlled bond angles. Soft Matter 5, 3823â3826 (2009).
Zhao, S., Wu, Y., Lu, W. & Liu, B. Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett. 8, 363â367 (2019).
Zhang, Y. et al. Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8, 21 (2017).
Schade, N. B. et al. Tetrahedral colloidal clusters from random parking of bidisperse spheres. Phys. Rev. Lett. 110, 148303 (2013).
Gong, Z., Hueckel, T., Yi, G.-R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234â238 (2017).
Demirörs, A. F. et al. Long-ranged oppositely charged interactions for designing new types of colloidal clusters. Phys. Rev. X 5, 021012 (2015).
Vutukuri, H. R., Stiefelhagen, J., Vissers, T., Imhof, A. & van Blaaderen, A. Bonding assembled colloids without loss of colloidal stability. Adv. Mater. 24, 412â416 (2012).
Islam, A., Chowdhry, B. & Snowden, M. Temperature-induced heteroflocculation in particulate colloidal dispersions. J. Phys. Chem. 99, 14205â14206 (1995).
Mihut, A. M., Stenqvist, B., Lund, M., Schurtenberger, P. & Crassous, J. J. Assembling oppositely charged lock and key responsive colloids: a mesoscale analog of adaptive chemistry. Sci. Adv. 3, e1700321 (2017).
MÃ¥nsson, L. K. et al. Preparation of colloidal molecules with temperature-tunable interactions from oppositely charged microgel spheres. Soft Matter 15, 8512â8524 (2019).
Opdam, J., Tuinier, R., Hueckel, T., Snoeren, T. J. & Sacanna, S. Selective colloidal bonds via polymer-mediated interactions. Soft Matter 16, 7438â7446 (2020).
Zion, M. Y. B. et al. Self-assembled three-dimensional chiral colloidal architecture. Science 358, 633â636 (2017).
Zhang, Y. et al. Multivalent, multiflavored droplets by design. Proc. Natl Acad. Sci. USA 115, 9086â9091 (2018).
McMullen, A., Holmes-Cerfon, M., Sciortino, F., Grosberg, A. Y. & Brujic, J. Freely jointed polymers made of droplets. Phys. Rev. Lett. 121, 138002 (2018).
Evers, C. H., Luiken, J. A., Bolhuis, P. G. & Kegel, W. K. Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534, 364â368 (2016).
Halverson, J. D. & Tkachenko, A. V. DNA-programmed mesoscopic architecture. Phys. Rev. E 87, 062310 (2013).
Wang, D., & Möhwald, H. Template-directed colloidal self-assemblyâthe route to âtop-downânanochemical engineering. J. Mater. Chem. 14, 459â468 (2004).
Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483â487 (2003).
Yi, G.-R. et al. Colloidal clusters of silica or polymer microspheres. Adv. Mater. 16, 1204â1208 (2004).
Cho, Y.-S. et al. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968â15975 (2005).
Peng, B., Smallenburg, F., Imhof, A., Dijkstra, M. & van Blaaderen, A. Colloidal clusters by using emulsions and dumbbell-shaped particles: Experiments and simulations. Angew. Chem. 125, 6841â6844 (2013).
Yi, G.-R. et al. Generation of uniform photonic balls by template-assisted colloidal crystallization. Synth. Met. 139, 803â806 (2003).
Wang, J. et al. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 9, 5259 (2018).
Ouhajji, S. et al. Wet-chemical synthesis of chiral colloids. ACS Nano 12, 12089â12095 (2018).
McGinley, J. T., Jenkins, I., Sinno, T. & Crocker, J. C. Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions. Soft Matter 9, 9119â9128 (2013).
McGinley, J. T., Wang, Y., Jenkins, I. C., Sinno, T. & Crocker, J. C. Crystal-templated colloidal clusters exhibit directional DNA interactions. ACS Nano 9, 10817â10825 (2015).
Yuan, Q. et al. Synthesis of a colloidal molecule from soft microgel spheres. ACS Macro Lett. 5, 565â568 (2016).
Yao, L., Li, Q., Guan, Y., Zhu, X. & Zhang, Y. Tetrahedral, octahedral, and triangular dipyramidal microgel clusters with thermosensitivity fabricated from binary colloidal crystals template and thiolâene reaction. ACS Macro Lett. 7, 80â84 (2018).
Keville, K., Franses, E. & Caruthers, J. Preparation and characterization of monodisperse polymer microspheroids. J. Colloid Interface Sci. 144, 103â126 (1991).
Champion, J. A., Katare, Y. K. & Mitragotri, S. Making polymeric micro- and nanoparticles of complex shapes. Proc. Natl Acad. Sci. USA 104, 11901â11904 (2007).
Yoo, J.-W. & Mitragotri, S. Polymer particles that switch shape in response to a stimulus. Proc. Natl Acad. Sci. USA 107, 11205â11210 (2010).
Wang, H., Li, B., Yodh, A. G. & Zhang, Z. Stimuli-responsive shape switching of polymer colloids by temperature-sensitive absorption of solvent. Angew. Chem. 128, 10106â10109 (2016).
Fernández-Rico, C. et al. Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases. Science 369, 950â955 (2020).
Chevalier, Y. et al. Film formation with latex particles. Colloid Polym. Sci. 270, 806â821 (1992).
Sun, Z. et al. Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips. Langmuir 21, 8987â8991 (2005).
Deng, Y. et al. A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles. J. Mater. Chem. 18, 408â415 (2008).
Vutukuri, H. R., Imhof, A. & Van Blaaderen, A. Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases. Angew. Chem. 126, 14050â14054 (2014).
Wang, Y., McGinley, J. T. & Crocker, J. C. Dimpled polyhedral colloids formed by colloidal crystal templating. Langmuir 33, 3080â3087 (2017).
Hueckel, T. & Sacanna, S. Mix-and-melt colloidal engineering. ACS Nano 12, 3533â3540 (2018).
Liu, M., Zheng, X., Dong, F., Ward, M. D. & Weck, M. Reversible morphology switching of colloidal particles. Chem. Mater. 30, 6903â6907 (2018).
Kim, S.-H. et al. Synthesis and assembly of colloidal particles with sticky dimples. J. Am. Chem. Soc. 134, 16115â16118 (2012).
Chen, W.-H., Tu, F., Bradley, L. C. & Lee, D. Shape-tunable synthesis of sub-micrometer lens-shaped particles via seeded emulsion polymerization. Chem. Mater. 29, 2685â2688 (2017).
Tanaka, T., Komatsu, Y., Fujibayashi, T., Minami, H. & Okubo, M. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles. Langmuir 26, 3848â3853 (2010).
Sacanna, S. et al. Shaping colloids for self-assembly. Nat. Commun. 4, 1688 (2013).
Zoldesi, C. I., van Walree, C. A. & Imhof, A. Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir 22, 4343â4352 (2006).
Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139â4142 (2011).
Wang, Y. et al. Three-dimensional lock and key colloids. J. Am. Chem. Soc. 136, 6866â6869 (2014).
Désert, A. et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem. Int. Ed. 52, 11068â11072 (2013).
Park, J.-G. et al. Photonic-crystal hydrogels with a rapidly tunable stop band and high reflectivity across the visible. Opt. Mater. Express 7, 253â263 (2017).
Liu, P. et al. Self-assembled colloidal arrays for structural color. Nanoscale Adv. 1, 1672â1685 (2019).
Choe, A. et al. Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film. NPG Asia Mater. 10, 912â922 (2018).
Okubo, M., Kobayashi, H., Huang, C., Miyanaga, E. & Suzuki, T. Water absorption behavior of polystyrene particles prepared by emulsion polymerization with nonionic emulsifiers and innovative easy synthesis of hollow particles. Langmuir 33, 3468â3475 (2017).
Shi, H., Huang, C., Liu, X. & Okubo, M. Role of osmotic pressure for the formation of sub-micrometer-sized, hollow polystyrene particles by heat treatment in aqueous dispersed systems. Langmuir 35, 12150â12157 (2019).
Sacanna, S. & Hueckel, T. Self-inflating microcapsules. US Patent 15/877,213 (2018).
Ramli, R. A. Hollow polymer particles: a review. RSC Adv. 7, 52632â52650 (2017).
Quilliet, C., Zoldesi, C., Riera, C., Van Blaaderen, A. & Imhof, A. Anisotropic colloids through non-trivial buckling. Eur. Phys. J. E Soft Matter 27, 13â20 (2008).
Knoche, S. & Kierfeld, J. Buckling of spherical capsules. Phys. Rev. E 84, 046608 (2011).
Knoche, S. & Kierfeld, J. Osmotic buckling of spherical capsules. Soft Matter 10, 8358â8369 (2014).
Sacanna, S., Irvine, W., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575â578 (2010).
Sacanna, S., Irvine, W. T., Rossi, L. & Pine, D. J. Lock and key colloids through polymerization-induced buckling of monodisperse silicon oil droplets. Soft Matter 7, 1631â1634 (2011).
Nguyen, T. D., Jankowski, E. & Glotzer, S. C. Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 5, 8892â8903 (2011).
Meester, V., Verweij, R. W., van der Wel, C. & Kraft, D. J. Colloidal recycling: reconfiguration of random aggregates into patchy particles. ACS Nano 10, 4322â4329 (2016).
Marin, O. et al. Self-faceting of emulsion droplets as a route to solid icosahedra and other polyhedra. J. Colloid Interface Sci. 538, 541â545 (2019).
Liber, S. R. et al. Polyhedral water droplets: shape transitions and mechanism. J. Am. Chem. Soc. 142, 8672â8678 (2020).
Diaz, J. A., Oh, J. S., Yi, G.-R. & Pine, D. J. Photo-printing of faceted DNA patchy particles. Proc. Natl Acad. Sci. USA 117, 10645â10653 (2020).
Go, D., Kodger, T. E., Sprakel, J. & Kuehne, A. J. Programmable co-assembly of oppositely charged microgels. Soft Matter 10, 8060â8065 (2014).
Elsesser, M. T. & Hollingsworth, A. D. Revisiting the synthesis of a well-known comb-graft copolymer stabilizer and its application to the dispersion polymerization of poly(methyl methacrylate) in organic media. Langmuir 26, 17989â17996 (2010).
Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487â490 (2020).
Rogers, W. B., Shih, W. M. & Manoharan, V. N. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1, 16008 (2016).
Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).
Kim, A. J., Biancaniello, P. L. & Crocker, J. C. Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991â2001 (2006).
Moon, J. et al. DNA-coated microspheres and their colloidal superstructures. Macromol. Res. 26, 1085â1094 (2018).
Leunissen, M. E. et al. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 5, 2422â2430 (2009).
Lan, Y., Wu, Y., Karas, A. & Scherman, O. A. Photoresponsive hybrid raspberry-like colloids based on cucurbit[8]uril hostâguest interactions. Angew. Chem. Int. Ed. 53, 2166â2169 (2014).
Han, K. et al. Social self-sorting of colloidal families in co-assembling microgel systems. Angew. Chem. 129, 2208â2214 (2017).
Wang, Y. et al. Patchy particle self-assembly via metal coordination. J. Am. Chem. Soc. 135, 14064â14067 (2013).
Pusey, P. N. & Van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340â342 (1986).
Bartlett, P., Ottewill, R. & Pusey, P. Superlattice formation in binary mixtures of hard-sphere colloids. Phys. Rev. Lett. 68, 3801 (1992).
Roller, J., Geiger, J. D., Voggenreiter, M., Meijer, J.-M. & Zumbusch, A. Formation of nematic order in 3D systems of hard colloidal ellipsoids. Soft Matter 16, 1021â1028 (2020).
Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453â457 (2012).
van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931â940 (2014).
Harper, E. S., van Anders, G. & Glotzer, S. C. The entropic bond in colloidal crystals. Proc. Natl Acad. Sci. USA 116, 16703â16710 (2019).
Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183â192 (1958).
Zhao, K. & Mason, T. G. Directing colloidal self-assembly through roughness-controlled depletion attractions. Phys. Rev. Lett. 99, 268301 (2007).
Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787â10792 (2012).
Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable assembly of hybrid colloids induced by regioselective depletion. Nat. Mater. 19, 1354â1361 (2020).
Tigges, T. & Walther, A. Hierarchical self-assembly of 3D-printed lock-and-key colloids through shape recognition. Angew. Chem. Int. Ed. 55, 11261â11265 (2016).
Liljeström, V., Chen, C., Dommersnes, P., Fossum, J. O. & Gröschel, A. H. Active structuring of colloids through field-driven self-assembly. Curr. Opin. Colloid Interface Sci. 40, 25â41 (2019).
Lumsdon, S. O., Kaler, E. W., Williams, J. P. & Velev, O. D. Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl. Phys. Lett. 82, 949â951 (2003).
Crassous, J. J. et al. Field-induced assembly of colloidal ellipsoids into well-defined microtubules. Nat. Commun. 5, 5516 (2014).
Gangwal, S., Cayre, O. J. & Velev, O. D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir 24, 13312â13320 (2008).
Song, P. et al. Patchy particle packing under electric fields. J. Am. Chem. Soc. 137, 3069â3075 (2015).
Vutukuri, H. R. et al. Colloidal analogues of charged and uncharged polymer chains with tunable stiffness. Angew. Chem. 124, 11411â11415 (2012).
Sacanna, S., Rossi, L. & Pine, D. J. Magnetic click colloidal assembly. J. Am. Chem. Soc. 134, 6112â6115 (2012).
Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380â382 (2008).
Skjeltorp, A. T. One- and two-dimensional crystallization of magnetic holes. Phys. Rev. Lett. 51, 2306 (1983).
Erb, R. M., Son, H. S., Samanta, B., Rotello, V. M. & Yellen, B. B. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999â1002 (2009).
Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188â1194 (2019).
Nguyen, V., Dang, M., Nguyen, T. & Schall, P. Critical Casimir forces for colloidal assembly. J. Phys. Condens. Matter 28, 043001 (2016).
Nguyen, T. A. et al. Switching colloidal superstructures by critical Casimir forces. Adv. Mater. 29, 1700819 (2017).
MuÅ¡eviÄ, I. Liquid Crystal Colloids (Springer, 2017).
Loudet, J.-C., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407, 611â613 (2000).
Lapointe, C. P., Mason, T. G. & Smalyukh, I. I. Shape-controlled colloidal interactions in nematic liquid crystals. Science 326, 1083â1086 (2009).
Yuan, Y., Abuhaimed, G. N., Liu, Q. & Smalyukh, I. I. Self-assembled nematic colloidal motors powered by light. Nat. Commun. 9, 5040 (2018).
Van Megen, W. & Underwood, S. Glass transition in colloidal hard spheres: measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys. Rev. E 49, 4206 (1994).
Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290â293 (2000).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).
Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 347â369 (2010).
Nagamanasa, K. H., Gokhale, S., Sood, A. & Ganapathy, R. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11, 403â408 (2015).
Gokhale, S., Nagamanasa, K. H., Ganapathy, R. & Sood, A. Growing dynamical facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 4685 (2014).
Royall, C. P., Williams, S. R., Ohtsuka, T. & Tanaka, H. Direct observation of a local structural mechanism for dynamic arrest. Nat. Mater. 7, 556â561 (2008).
Kim, S.-H. et al. Inverse photonic glasses by packing bidisperse hollow microspheres with uniform cores. ACS Appl. Mater. Interfaces 9, 24155â24160 (2017).
GarcÃa, P. D., Sapienza, R., Blanco, Ã. & López, C. Photonic glass: a novel random material for light. Adv. Mater. 19, 2597â2602 (2007).
Donev, A. et al. Improving the density of jammed disordered packings using ellipsoids. Science 303, 990â993 (2004).
Yunker, P. J. et al. Rotational and translational phonon modes in glasses composed of ellipsoidal particles. Phys. Rev. E 83, 011403 (2011).
Kaufman, L. J. Heterogeneity in single-molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 64, 177â200 (2013).
Edmond, K. V., Elsesser, M. T., Hunter, G. L., Pine, D. J. & Weeks, E. R. Decoupling of rotational and translational diffusion in supercooled colloidal fluids. Proc. Natl Acad. Sci. USA 109, 17891â17896 (2012).
Ediger, M. D. Perspective: Highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).
Hong, L., Cacciuto, A., Luijten, E. & Granick, S. Clusters of amphiphilic colloidal spheres. Langmuir 24, 621â625 (2008).
Oh, J. S., Lee, S., Glotzer, S. C., Yi, G.-R. & Pine, D. J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 10, 3936 (2019).
Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578â581 (2012).
Yu, C., Zhang, J. & Granick, S. Selective Janus particle assembly at tipping points of thermally-switched wetting. Angew. Chem. Int. Ed. 53, 4364â4367 (2014).
Kang, C. & Honciuc, A. Influence of geometries on the assembly of snowman-shaped Janus nanoparticles. ACS Nano 12, 3741â3750 (2018).
Sciortino, F., Giacometti, A. & Pastore, G. Phase diagram of Janus particles. Phys. Rev. Lett. 103, 237801 (2009).
Li, M., Huang, X., Tang, T. D. & Mann, S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr. Opin. Chem. Biol. 22, 1â11 (2014).
Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235â240 (2005).
Bartlett, P. & Campbell, A. I. Three-dimensional binary superlattices of oppositely charged colloids. Phys. Rev. Lett. 95, 128302 (2005).
Hynninen, A.-P., Thijssen, J. H., Vermolen, E. C., Dijkstra, M. & Van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202â205 (2007).
Ducrot, E., He, M., Yi, G.-R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652â657 (2017).
Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Superlattices assembled through shape-induced directional binding. Nat. Commun. 6, 6912 (2015).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).
Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173 (2017).
Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547â11551 (2005).
He, M. et al. Colloidal diamond. Nature 585, 524â529 (2020).
Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Colloquium: Toward living matter with colloidal particles. Rev. Mod. Phys. 89, 031001 (2017).
Hagan, M. F. & Grason, G. M. Equilibrium mechanisms of self-limiting assembly. Preprint at arXiv https://arxiv.org/abs/2007.01927 (2020).
Jacobs, W. M. & Frenkel, D. Self-assembly of structures with addressable complexity. J. Am. Chem. Soc. 138, 2457â2467 (2016).
Fodor, E. & Marchetti, M. C. The statistical physics of active matter: from self-catalytic colloids to living cells. Phys. A Stat. Mech. Appl. 504, 106â120 (2018).
Acknowledgements
This work was supported by the US Army Research Office under award number W911NF-21-1-0011.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Materials thanks E. Duguet, D. Kraft and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hueckel, T., Hocky, G.M. & Sacanna, S. Total synthesis of colloidal matter. Nat Rev Mater 6, 1053â1069 (2021). https://doi.org/10.1038/s41578-021-00323-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41578-021-00323-x
This article is cited by
-
Illuminating defects in crystal clear colloidal assemblies
Nature Materials (2024)
-
Enabling three-dimensional real-space analysis of ionic colloidal crystallization
Nature Materials (2024)
-
Spearheading a new era in complex colloid synthesis with TPM and other silanes
Nature Reviews Chemistry (2024)
-
Hydrodynamic spin-orbit coupling in asynchronous optically driven micro-rotors
Nature Communications (2023)
-
Unconventional colloidal aggregation in chiral bacterial baths
Nature Physics (2023)