Abstract
Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called âmembrane contact sitesâ (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162â167 (2017). By simultaneously visualizing six organelles (the ER, Golgi complex, lysosomes, peroxisomes, mitochondria and lipid droplets), this study shows how organelles make numerous contacts that affect membrane dynamics.
Shai, N. et al. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat. Commun. 9, 1761 (2018). This study uses split fluorophores to systematically investigate organelle contacts in S. cerevisiae and shows that most organelles make contacts with more than one organelle.
Prinz, W. A. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell. Biol. 205, 759â769 (2014).
Helle, S. C. et al. Organization and function of membrane contact sites. Biochim. Biophys Acta 1833, 2526â2541 (2013).
Cohen, S., Valm, A. M. & Lippincott-Schwartz, J. Interacting organelles. Curr. Opin. Cell. Biol. 53, 84â91 (2018).
Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).
Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3â²UTR-mediated protein-protein interactions. Cell 175, 1492â1506 (2018).
Schorr, S. & van der Laan, M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin. Cell Dev. Biol. 76, 191â200 (2018).
Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004âE2013 (2015).
West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333â346 (2011).
Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).
Dickson, E. J. Endoplasmic reticulum-plasma membrane contacts regulate cellular excitability. Adv. Exp. Med. Biol. 997, 95â109 (2017).
Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358â362 (2011). This study shows that ER-mitochondria MCSâs mark sites where mitochondrial division will subsequently occur in mammalian cells and in S. cerevisiae.
Hoyer, M. J. et al. A novel class of ER membrane proteins regulates ER-associated endosome fission. Cell 175, 254â265 (2018).
Besprozvannaya, M. et al. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. Elife 7, e31019 (2018).
Gonzalez Montoro, A. et al. Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621â636 (2018).
Wang, S., Tukachinsky, H., Romano, F. B. & Rapoport, T. A. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife 5, e18605 (2016).
Glancy, B. et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 19, 487â496 (2017).
Picard, M. et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6, 6259 (2015).
Wong, Y. C., Peng, W. & Krainc, D. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2. Dev. Cell. 50, 339â354 (2019).
Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. Elife 5, e16582 (2016).
Xu, D. et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell. Biol. 217, 975â995 (2018).
Lackner, L. L., Ping, H., Graef, M., Murley, A. & Nunnari, J. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl Acad. Sci. USA 110, E458âE467 (2013).
Hariri, H. et al. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218, 1319â1334 (2019).
Hsu, F. et al. Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. Elife 7, e32282 (2018).
Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 2940 (2018).
Oikawa, K., Hayashi, M., Hayashi, Y. & Nishimura, M. Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. J. Integr. Plant Biol. 61, 836â852 (2019).
Lin, C. C. et al. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J. Hepatol. 61, 984â993 (2014).
Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395â409 (2016).
Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830â843 (2013). This study demonstrates that OSBP can use the difference in P14P levels in the ER and Golgi to drive cholesterol transport to the Golgi.
Quon, E. et al. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLOS Biol. 16, e2003864 (2018).
Murley, A. et al. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209, 539â548 (2015).
Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625â3639 (2018).
Munoz-Braceras, S., Tornero-Ecija, A. R., Vincent, O. & Escalante, R. VPS13A, a closely associated mitochondrial protein, is required for efficient lysosomal degradation. Dis. Model. Mech 12, dmm036681 (2019).
Liu, L. K., Choudhary, V., Toulmay, A. & Prinz, W. A. An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131â147 (2017). This study shows that yeast cells can generate MCSs that prevent the toxic accumulation of ceramide in the ER by facilitating non-vesicular ceramide exit from the ER when vesicular transport out of the ER is blocked.
Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85â101 (2019).
Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7â16 (2011).
Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803â809 (2003).
Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949â959 (2001).
Jain, A. & Holthuis, J. C. M. Membrane contact sites, ancient and central hubs of cellular lipid logistics. Biochim. Biophys Acta. 1864, 1450â1458 (2017).
John Peter, A. T. et al. Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites. J. Cell Biol. 216, 3219â3229 (2017).
Lang, A. B., John Peter, A. T., Walter, P. & Kornmann, B. ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J. Cell Biol. 210, 883â890 (2015).
Elbaz-Alon, Y. et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95â102 (2014).
Honscher, C. et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86â94 (2014).
de Saint-Jean, M. et al. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195, 965â978 (2011).
Kim, Y. J., Hernandez, M. L. & Balla, T. Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol. 23, 270â278 (2013).
Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428â432 (2015).
Moser von Filseck, J. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432â436 (2015).
Moser von Filseck, J., Vanni, S., Mesmin, B., Antonny, B. & Drin, G. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat. Commun. 6, 6671 (2015).
Ghai, R. et al. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat. Commun. 8, 757 (2017).
Mesmin, B. et al. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J. 36, 3156â3174 (2017).
Putney, J. W. Introduction. Adv. Exp. Med. Biol. 993, 3â13 (2017).
Hirve, N., Rajanikanth, V., Hogan, P. G. & Gudlur, A. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm. Cell. Rep. 22, 72â83 (2018).
Petersen, O. H., Courjaret, R. & Machaca, K. Ca2+ tunnelling through the ER lumen as a mechanism for delivering Ca2+ entering via store-operated Ca2+ channels to specific target sites. J. Physiol. 595, 2999â3014 (2017).
Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177â182 (2008).
Chang, C. L., Chen, Y. J., Quintanilla, C. G., Hsieh, T. S. & Liou, J. EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca2+ entry. J. Cell Biol. 217, 2047â2058 (2018).
Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494â1509 (2013).
Chang, C. L. et al. Feedback regulation of receptor-induced Ca2+ signaling mediated by e-syt1 and nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813â825 (2013).
Kumagai, K. & Hanada, K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett. 593, 2366â2377 (2019).
Kannan, M., Lahiri, S., Liu, L. K., Choudhary, V. & Prinz, W. A. Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER. J. Lipid Res. 58, 553â562 (2017). This study demonstrates that phospholipid synthesis at MCSs promotes non-vesicular lipid transport at MCSs.
Kim, Y. J., Guzman-Hernandez, M. L. & Balla, T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21, 813â824 (2011).
Maeda, K. et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501, 257â261 (2013).
Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583â2599 (2019).
Schuldiner, M. & Bohnert, M. A different kind of love - lipid droplet contact sites. Biochim. Biophys Acta 1862, 1188â1196 (2017).
Kerner, J. & Hoppel, C. Fatty acid import into mitochondria. Biochim. Biophys Acta. 1486, 1â17 (2000).
Michaud, M. & Jouhet, J. Lipid trafficking at membrane contact sites during plant development and stress response. Front. Plant Sci. 10, 2 (2019).
Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S. & Ponka, P. Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110, 125â132 (2007).
Das, A., Nag, S., Mason, A. B. & Barroso, M. M. Endosome-mitochondria interactions are modulated by iron release from transferrin. J. Cell Biol. 214, 831â845 (2016).
Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744â747 (1993). This study demonstrates that high Ca 2+ levels at ERâmitochondria MCSs are transiently generated next to the ER-localized Ca 2+ channel and are sensed by contacting mitochondria.
Csordas, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121â132 (2010). This study provides direct evidence that high-Ca 2+ domains exist between the ER and mitochondria at MCSs and shows that these organelles must be tethered for Ca 2+ signalling.
Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901â911 (2006).
Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523â540 (2018).
Zhang, X. et al. Redox signals at the ER-mitochondria interface control melanoma progression. EMBO J. 38, e100871 (2019).
Muallem, S., Chung, W. Y., Jha, A. & Ahuja, M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep. 18, 1893â1904 (2017).
Herrera-Cruz, M. S. & Simmen, T. Over six decades of discovery and characterization of the architecture at mitochondria-associated membranes (MAMs). Adv. Exp. Med. Biol. 997, 13â31 (2017).
Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623â630 (2017).
Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477â481 (2009). This study identifies an ERâmitochondria tethering complex in yeast that is found exclusively at these contact sites and plays a role in lipid exchange between the ER and mitochondria.
Booth, D. M., Enyedi, B., Geiszt, M., Varnai, P. & Hajnoczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240â248 (2016). This study demonstrates how mitochondria-generated ROS participate in ERâmitochondria communication at MCSs and regulate Ca 2+ signalling and oxidative phosphorylation.
Lock, J. T., Sinkins, W. G. & Schilling, W. P. Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells. J. Physiol. 590, 3431â3447 (2012).
Yoboue, E. D., Sitia, R. & Simmen, T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death. Dis. 9, 331 (2018).
Gordaliza-Alaguero, I., Canto, C. & Zorzano, A. Metabolic implications of organelle-mitochondria communication. EMBO Rep. 20, e47928 (2019).
Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597â604 (2005).
Dickson, E. J. & Hille, B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476, 1â23 (2019).
Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315â321 (1984).
Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019â1137 (2013).
Chang, C. L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289â14301 (2015).
Kim, Y. J., Guzman-Hernandez, M. L., Wisniewski, E. & Balla, T. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev. Cell 33, 549â561 (2015).
Lees, J. A. et al. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355, eaah6171 (2017).
Bian, X., Saheki, Y. & De Camilli, P. Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J. 37, 219â234 (2018).
Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504â515 (2016).
Sohn, M. et al. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J. Cell Biol 217, 1797â1813 (2018).
Stuible, M. & Tremblay, M. L. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol. 20, 672â679 (2010).
Haj, F. G. et al. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLOS One 7, e36633 (2012).
Stefan, C. J. et al. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144, 389â401 (2011).
Venditti, R. et al. The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. J. Cell Biol. 218, 783â797 (2019).
Zewe, J. P., Wills, R. C., Sangappa, S., Goulden, B. D. & Hammond, G. R. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 7, e35588 (2018).
Labbe, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357â391 (2014).
Cho, B. et al. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat. Commun. 8, 15754 (2017).
Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife 2, e00422 (2013).
Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464â467 (2013).
Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. Elife 4, https://doi.org/10.7554/eLife.08828 (2015).
Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351â358 (1998).
Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815â826 (1999).
Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170â2181 (2016).
Arasaki, K. et al. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev. Cell 32, 304â317 (2015).
Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139â143 (2016).
Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430â1442 (2018).
Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contact sites define the position and timing of endosome fission. Cell 159, 1027â1041 (2014).
Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728â734 (2008). This study demonstrates that specialized ERâplasma membrane MCSs form a septin-dependent ER diffusion barrier in S. cerevisiae between mother and bud cells, which results in the asymmetric inheritance of cellular components.
Clay, L. et al. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Elife 3, e01883 (2014).
Luedeke, C. et al. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169, 897â908 (2005).
Chao, J. T. et al. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 158, 620â632 (2014).
Sugiyama, S. & Tanaka, M. Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proc. Natl Acad. Sci. USA 116, 8909â8918 (2019).
Perez-Sancho, J. et al. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 26, 705â717 (2016).
Tilsner, J., Nicolas, W., Rosado, A. & Bayer, E. M. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu. Rev. Plant Biol. 67, 337â364 (2016).
Nicolas, W. J. et al. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat. Plants 3, 17082 (2017).
Kvam, E. & Goldfarb, D. S. Nucleus-vacuole junctions in yeast: anatomy of a membrane contact site. Biochem. Soc. Trans 34, 340â342 (2006).
Dawaliby, R. & Mayer, A. Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions. Mol. Biol. Cell 21, 4173â4183 (2010).
Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24, 2918â2931 (2013).
Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534â2544 (2013).
Ktistakis, N. T. ER platforms mediating autophagosome generation. Biochim. Biophys Acta https://doi.org/10.1016/j.bbalip.2019.03.005 (2019).
Okumura, K. et al. Norepinephrine-induced 1,2-diacylglycerol accumulation and change in its fatty acid composition in the isolated perfused rat heart. Mol. Cell Biochem. 93, 173â178 (1990).
Nascimbeni, A. C. et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018â2033 (2017).
Zhao, Y. G. et al. The ER contact proteins vapa/b interact with multiple autophagy proteins to modulate autophagosome biogenesis. Curr. Biol. 28, 1234â1245 (2018). This study identifies proteins that link the ER and autophagosomal regulators at contact sites within growing autophagosomes.
Zachari, M. & Ganley, I. G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585â596 (2017).
Zhao, Y. G. et al. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol. Cell 67, 974â989 (2017).
Tabara, L. C. & Escalante, R. VMP1 Establishes er-microdomains that regulate membrane contact sites and autophagy. PLOS One 11, e0166499 (2016).
Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719â1735 (2017).
Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787â1798 (2019).
Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433â1437 (2009).
Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180â1185 (2009).
Biazik, J., Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11, 439â451 (2015).
Elkin, S. R., Lakoduk, A. M. & Schmid, S. L. Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr 166, 196â204 (2016).
Eden, E. R., White, I. J., Tsapara, A. & Futter, C. E. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat. Cell Biol. 12, 267â272 (2010). This study shows that, at MCSs, PTP1B in the ER acts in trans on epidermal growth factor in endosomes.
Stuible, M. et al. PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2. J. Biol. Chem. 285, 23899â23907 (2010).
Dong, R. et al. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408â423 (2016).
Allison, R. et al. Defects in er-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337â1355 (2017).
Salogiannis, J., Egan, M. J. & Reck-Peterson, S. L. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J. Cell Biol. 212, 289â296 (2016). This study shows that peroxisomes can be transported in cells by being linked at MCSs to early endosomes, which are themselves moved by microtubule-dependent motors.
Friedman, J. R., Webster, B. M., Mastronarde, D. N., Verhey, K. J. & Voeltz, G. K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363â375 (2010).
Jongsma, M. L. et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166, 152â166 (2016).
Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 glued and late endosome positioning. J. Cell Biol. 185, 1209â1225 (2009). This study shows that late endosomes can be attached to the ER via MCSs or to motor proteins by a cholesterol-regulated switch.
Raiborg, C. et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234â238 (2015). This study shows that ERâlate endosome MCSs regulate loading of the microtubule-dependent motor kinesin 1 onto the late endosomes, controlling their movement to the plasma membrane and, as a result, neurite outgrowth.
Knoblach, B. et al. An ER-peroxisome tether exerts peroxisome population control in yeast. EMBO J. 32, 2439â2453 (2013).
Knoblach, B. & Rachubinski, R. A. Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae. Traffic 16, 298â309 (2015).
Swayne, T. C. et al. Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994â1999 (2011).
Pernice, W. M., Vevea, J. D. & Pon, L. A. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7, 10595 (2016).
Eisenberg-Bord, M. et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J. Cell Biol 217, 269â282 (2018).
Teixeira, V. et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms. J. Cell Biol. 217, 127â138 (2018).
Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869â885 (2018). This study demonstrates that, in brown adipose tissue, mitochondria that from contacts with lipid droplets are metabolically different from those that do not.
Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143â2152 (2011).
Gutierrez, T. & Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium. 70, 64â75 (2018).
Michaud, M., Prinz, W. A. & Jouhet, J. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J. 284, 376â390 (2017).
Michaud, M. et al. AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr. Biol. 26, 627â639 (2016).
Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077â3082 (2003).
Garbarino, J. et al. Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. J. Biol. Chem. 284, 30994â31005 (2009).
Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137â155 (2018).
Hariri, H. et al. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 19, 57â72 (2018).
Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541â551 (2015).
Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9â21 (2017).
Roelants, F. M. et al. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol. Biol. Cell 29, 2128â2136 (2018).
Omnus, D. J., Manford, A. G., Bader, J. M., Emr, S. D. & Stefan, C. J. Phosphoinositide kinase signaling controls ER-PM cross-talk. Mol. Biol. Cell 27, 1170â1180 (2016).
Perez-Sancho, J. et al. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 168, 132â143 (2015).
Lee, E. et al. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 1420â1429 (2019).
Schapire, A. L. et al. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20, 3374â3388 (2008).
Yamazaki, T., Kawamura, Y., Minami, A. & Uemura, M. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20, 3389â3404 (2008).
Bockler, S. & Westermann, B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev. Cell 28, 450â458 (2014).
Kawano, S. et al. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J. Cell Biol. 217, 959â974 (2018).
Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368â1384 (2016).
Missiroli, S. et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 16, 2415â2427 (2016).
Liu, X., Wen, X. & Klionsky, D. J. ER-mitochondria contacts are required for pexophagy in Saccharomyces cerevisiae. Contact (Thousand Oaks) 2, https://journals.sagepub.com/doi/10.1177/2515256418821584 (2018).
Mattiazzi Usaj, M. et al. Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J. Mol. Biol. 427, 2072â2087 (2015).
Roberts, P. et al. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 129â141 (2003).
Datta, S., Liu, Y., Hariri, H., Bowerman, J. & Henne, W. M. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. J. Cell Biol. 218, 1335â1351 (2019).
Murley, A. et al. Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J. Cell Biol. 216, 2679â2689 (2017).
Liu, Z. W. et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc. Diabetol. 12, 158 (2013).
Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880â1891 (2012).
Raturi, A. et al. TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J. Cell Biol. 214, 433â444 (2016).
Gilady, S. Y. et al. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619â629 (2010).
Marino, M. et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum. Mol. Genet. 24, 1843â1855 (2015).
Debattisti, V., Gerencser, A. A., Saotome, M., Das, S. & Hajnoczky, G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 21, 1667â1680 (2017).
Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427â1435 (2014).
Eisenberg-Bord, M. et al. The endoplasmic reticulum-mitochondria encounter structure complex coordinates coenzyme Q biosynthesis. Contact (Thousand Oaks) 2, https://doi.org/10.1177/2515256418825409 (2019).
Mourier, A. et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208, 429â442 (2015).
Subramanian, K. et al. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J. Cell Biol. 218, 1353â1369 (2019).
Simmen, T. & Herrera-Cruz, M. S. Plastic mitochondria-endoplasmic reticulum (ER) contacts use chaperones and tethers to mould their structure and signaling. Curr. Opin. Cell Biol. 53, 61â69 (2018).
Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552â565 (2003).
Lynes, E. M. et al. Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. J. Cell Sci. 126, 3893â3903 (2013).
Eckenrode, E. F., Yang, J., Velmurugan, G. V., Foskett, J. K. & White, C. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J. Biol. Chem. 285, 13678â13684 (2010).
Xu, L. et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol. Rep. 39, 985â992 (2018).
Mebratu, Y. A. et al. Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat. Commun. 8, 803 (2017).
Giorgi, C. et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl Acad. Sci. USA 112, 1779â1784 (2015).
Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247â1251 (2010).
Doghman-Bouguerra, M. et al. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 17, 1264â1280 (2016).
Chami, M. et al. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641â651 (2008).
van Vliet, A. R. et al. The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Mol. Cell 65, 885â899 (2017).
Philpott, C. C. & Jadhav, S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free. Radic. Biol. Med. 133, 112â117 (2019).
Kambe, T., Matsunaga, M. & Takeda, T. A. Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int. J. Mol. Sci. 18, E2179 (2017).
Williamson, C. D. & Colberg-Poley, A. M. Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev. Med. Virol. 19, 147â164 (2009).
Levy, A., Zheng, J. Y. & Lazarowitz, S. G. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25, 2018â2025 (2015).
Derre, I., Swiss, R. & Agaisse, H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLOS Pathog. 7, e1002092 (2011). This study shows how the intracellular pathogen Chlamydia trachomatis generates MCSs between the ER and the membrane of the inclusion that the bacteria propagate in, by hijacking CERT and other host MCS proteins.
Elwell, C. A. et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLOS Pathog. 7, e1002198 (2011).
Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014). This study shows that TDP-43, which is linked to amyotrophic lateral sclerosis, regulates ERâmitochondria MCSs and cellular Ca 2+ homeostasis.
Bernard-Marissal, N., Medard, J. J., Azzedine, H. & Chrast, R. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138, 875â890 (2015).
Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822â831 (2004).
Area-Gomez, E. et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810â1816 (2009).
Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106â4123 (2012).
Zampese, E. et al. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl Acad. Sci. USA 108, 2777â2782 (2011).
Lim, Y., Cho, I. T., Schoel, L. J., Cho, G. & Golden, J. A. Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 78, 679â696 (2015).
Rampoldi, L. et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat. Genet. 28, 119â120 (2001).
Ueno, S. et al. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat. Genet. 28, 121â122 (2001).
Guardia-Laguarta, C. et al. -Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249â259 (2014).
Cali, T., Ottolini, D., Negro, A. & Brini, M. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914â17929 (2012).
Lesage, S. et al. Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am. J. Hum. Genet. 98, 500â513 (2016).
Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500â511 (2009). This study emonstrates that accumulation of the ganglioside monosialotetrahexosylganglioside at ERâmitochondria MCSs induces Ca 2+-mediated apoptotic signalling that links ER stress and apoptosis in neurons.
Szado, T. et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl Acad. Sci. USA 105, 2427â2432 (2008).
Marchi, S. et al. Selective modulation of subtype III IP(3)R by Akt regulates ER Ca(2)(+) release and apoptosis. Cell Death Dis. 3, e304 (2012).
Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135â139 (2003).
Anelli, T. et al. Ero1alpha regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid. Redox Signal. 16, 1077â1087 (2012).
Kakihana, T., Nagata, K. & Sitia, R. Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding. Antioxid. Redox Signal. 16, 763â771 (2012).
Betz, C. et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. USA 110, 12526â12534 (2013).
Bononi, A. et al. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20, 1631â1643 (2013).
Avalle, L. et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. 26, 932â942 (2019).
Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279â3294 (2014).
Thoudam, T. et al. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571â586 (2019).
Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142â148 (2010).
Acknowledgements
This work was supported by the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases. The authors thank Mary Weston for critically reading the manuscript.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Molecular Cell Biology thanks T. Levine, T. Simmen and the other, anonymous, reviewer for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Multivesicular bodies
-
(MVBs). Endocytic compartments containing internal luminal vesicles.
- Store-operated calcium entry
-
The regulated entry of Ca2+ into cells in response to the depletion of Ca2+ in the endoplasmic reticulum.
- ER stress
-
An accumulation of unfolded proteins in the endoplasmic reticulum (ER) that affects ER function.
- Ceramides
-
Lipids used to generate complex sphingolipids, one of the major types of lipid in cellular membranes.
- Phosphatidylinositol kinases
-
Kinases that phosphorylate phosphatidylinositol on the inositol moiety.
- Inositol 1,4,5-trisphosphate receptors
-
(IP3Rs). Endoplasmic Ca2+ channels activated by inositol 1,4,5-trisphosphate, an important signalling molecule formed by the cleavage of phosphatidylinositol 4,5-bisphosphate.
- ERâmitochondria encounter structure
-
(ERMES). An endoplasmic reticulum (ER)âmitochondrial tethering complex found in yeasts.
- Sphingolipids
-
A major type of lipids found in cellular membranes.
- Septins
-
A group of GTP-binding proteins that can assemble into cytoskeletal-like structures.
- Interscapular
-
The region between the shoulder blades.
- Brown adipose tissue
-
A type of adipose tissue that serves as a site of thermogenesis.
- Galactoglycerolipids
-
A family of glycerolipids that contain one or more sugars linked directly to the glycerol moiety.
- Selective autophagy
-
A degradative pathway in which particular organelles or aggregates are degraded in lysosomes and vacuoles in development and in response to nutrient stress.
- Unfolded protein response
-
Stress response pathways induced by endoplasmic reticulum stress.
- TDP-43
-
TAR DNA-binding protein 43 (TDP-43) is a 43-kDa RNA and DNA-binding protein that is pathologically linked to amyotrophic lateral sclerosis and frontotemporal dementia.
- Presenilin
-
A membrane protein thought to contribute to the development of Alzheimer disease.
- Chorea-acanthocytosis
-
A rare neurological disorder that affects body movement.
- α-Synuclein
-
A protein predominantly expressed in neurons that can cluster into insoluble aggregates in Parkinson disease and other neurogenerative disorders.
Rights and permissions
About this article
Cite this article
Prinz, W.A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21, 7â24 (2020). https://doi.org/10.1038/s41580-019-0180-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41580-019-0180-9
This article is cited by
-
Multi-resolution analysis enables fidelity-ensured deconvolution for fluorescence microscopy
eLight (2024)
-
Focusing on mitochondria in the brain: from biology to therapeutics
Translational Neurodegeneration (2024)
-
Membrane fission via transmembrane contact
Nature Communications (2024)
-
Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition
The EMBO Journal (2024)
-
Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons
Nature Communications (2024)