Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The functional universe of membrane contact sites

Abstract

Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called ‘membrane contact sites’ (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functions of membrane contact sites.
Fig. 2: Diversity of membrane contact sites.
Fig. 3: Phosphoinositide metabolism at membrane contact sites.
Fig. 4: Calcium signalling and signalling in trans at membrane contact sites.
Fig. 5: Examples of autophagy at membrane contact sites.
Fig. 6: Roles of membrane contact sites in cellular stress responses.

Similar content being viewed by others

References

  1. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017). By simultaneously visualizing six organelles (the ER, Golgi complex, lysosomes, peroxisomes, mitochondria and lipid droplets), this study shows how organelles make numerous contacts that affect membrane dynamics.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shai, N. et al. Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat. Commun. 9, 1761 (2018). This study uses split fluorophores to systematically investigate organelle contacts in S. cerevisiae and shows that most organelles make contacts with more than one organelle.

    PubMed  PubMed Central  Google Scholar 

  3. Prinz, W. A. Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell. Biol. 205, 759–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Helle, S. C. et al. Organization and function of membrane contact sites. Biochim. Biophys Acta 1833, 2526–2541 (2013).

    CAS  PubMed  Google Scholar 

  5. Cohen, S., Valm, A. M. & Lippincott-Schwartz, J. Interacting organelles. Curr. Opin. Cell. Biol. 53, 84–91 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Scorrano, L. et al. Coming together to define membrane contact sites. Nat. Commun. 10, 1287 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Ma, W. & Mayr, C. A membraneless organelle associated with the endoplasmic reticulum enables 3′UTR-mediated protein-protein interactions. Cell 175, 1492–1506 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schorr, S. & van der Laan, M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin. Cell Dev. Biol. 76, 191–200 (2018).

    CAS  PubMed  Google Scholar 

  9. Fernandez-Busnadiego, R., Saheki, Y. & De Camilli, P. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc. Natl Acad. Sci. USA 112, E2004–E2013 (2015).

    CAS  PubMed  Google Scholar 

  10. West, M., Zurek, N., Hoenger, A. & Voeltz, G. K. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193, 333–346 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis, S. C., Uchiyama, L. F. & Nunnari, J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353, aaf5549 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Dickson, E. J. Endoplasmic reticulum-plasma membrane contacts regulate cellular excitability. Adv. Exp. Med. Biol. 997, 95–109 (2017).

    CAS  PubMed  Google Scholar 

  13. Friedman, J. R. et al. ER tubules mark sites of mitochondrial division. Science 334, 358–362 (2011). This study shows that ER-mitochondria MCS’s mark sites where mitochondrial division will subsequently occur in mammalian cells and in S. cerevisiae.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoyer, M. J. et al. A novel class of ER membrane proteins regulates ER-associated endosome fission. Cell 175, 254–265 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Besprozvannaya, M. et al. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. Elife 7, e31019 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Gonzalez Montoro, A. et al. Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636 (2018).

    CAS  PubMed  Google Scholar 

  17. Wang, S., Tukachinsky, H., Romano, F. B. & Rapoport, T. A. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife 5, e18605 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Glancy, B. et al. Power grid protection of the muscle mitochondrial reticulum. Cell Rep. 19, 487–496 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Picard, M. et al. Trans-mitochondrial coordination of cristae at regulated membrane junctions. Nat. Commun. 6, 6259 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong, Y. C., Peng, W. & Krainc, D. Lysosomal regulation of inter-mitochondrial contact fate and motility in Charcot-Marie-Tooth type 2. Dev. Cell. 50, 339–354 (2019).

    CAS  PubMed  Google Scholar 

  21. Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. Elife 5, e16582 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Xu, D. et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J. Cell. Biol. 217, 975–995 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lackner, L. L., Ping, H., Graef, M., Murley, A. & Nunnari, J. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl Acad. Sci. USA 110, E458–E467 (2013).

    CAS  PubMed  Google Scholar 

  24. Hariri, H. et al. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218, 1319–1334 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu, F. et al. Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. Elife 7, e32282 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 2940 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. Oikawa, K., Hayashi, M., Hayashi, Y. & Nishimura, M. Re-evaluation of physical interaction between plant peroxisomes and other organelles using live-cell imaging techniques. J. Integr. Plant Biol. 61, 836–852 (2019).

    PubMed  Google Scholar 

  28. Lin, C. C. et al. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J. Hepatol. 61, 984–993 (2014).

    CAS  PubMed  Google Scholar 

  29. Eisenberg-Bord, M., Shai, N., Schuldiner, M. & Bohnert, M. A tether is a tether is a tether: tethering at membrane contact sites. Dev. Cell 39, 395–409 (2016).

    CAS  PubMed  Google Scholar 

  30. Mesmin, B. et al. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843 (2013). This study demonstrates that OSBP can use the difference in P14P levels in the ER and Golgi to drive cholesterol transport to the Golgi.

    CAS  PubMed  Google Scholar 

  31. Quon, E. et al. Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLOS Biol. 16, e2003864 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Murley, A. et al. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209, 539–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Munoz-Braceras, S., Tornero-Ecija, A. R., Vincent, O. & Escalante, R. VPS13A, a closely associated mitochondrial protein, is required for efficient lysosomal degradation. Dis. Model. Mech 12, dmm036681 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, L. K., Choudhary, V., Toulmay, A. & Prinz, W. A. An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147 (2017). This study shows that yeast cells can generate MCSs that prevent the toxic accumulation of ceramide in the ER by facilitating non-vesicular ceramide exit from the ER when vesicular transport out of the ER is blocked.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019).

    CAS  PubMed  Google Scholar 

  37. Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7–16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanada, K. et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003).

    CAS  PubMed  Google Scholar 

  39. Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949–959 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, A. & Holthuis, J. C. M. Membrane contact sites, ancient and central hubs of cellular lipid logistics. Biochim. Biophys Acta. 1864, 1450–1458 (2017).

    CAS  Google Scholar 

  41. John Peter, A. T. et al. Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites. J. Cell Biol. 216, 3219–3229 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lang, A. B., John Peter, A. T., Walter, P. & Kornmann, B. ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J. Cell Biol. 210, 883–890 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Elbaz-Alon, Y. et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102 (2014).

    CAS  PubMed  Google Scholar 

  44. Honscher, C. et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86–94 (2014).

    PubMed  Google Scholar 

  45. de Saint-Jean, M. et al. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195, 965–978 (2011).

    PubMed  PubMed Central  Google Scholar 

  46. Kim, Y. J., Hernandez, M. L. & Balla, T. Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol. 23, 270–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung, J. et al. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349, 428–432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moser von Filseck, J. et al. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349, 432–436 (2015).

    CAS  PubMed  Google Scholar 

  49. Moser von Filseck, J., Vanni, S., Mesmin, B., Antonny, B. & Drin, G. A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes. Nat. Commun. 6, 6671 (2015).

    PubMed  Google Scholar 

  50. Ghai, R. et al. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat. Commun. 8, 757 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Mesmin, B. et al. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J. 36, 3156–3174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Putney, J. W. Introduction. Adv. Exp. Med. Biol. 993, 3–13 (2017).

    CAS  PubMed  Google Scholar 

  53. Hirve, N., Rajanikanth, V., Hogan, P. G. & Gudlur, A. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm. Cell. Rep. 22, 72–83 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Petersen, O. H., Courjaret, R. & Machaca, K. Ca2+ tunnelling through the ER lumen as a mechanism for delivering Ca2+ entering via store-operated Ca2+ channels to specific target sites. J. Physiol. 595, 2999–3014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chang, C. L., Chen, Y. J., Quintanilla, C. G., Hsieh, T. S. & Liou, J. EB1 binding restricts STIM1 translocation to ER-PM junctions and regulates store-operated Ca2+ entry. J. Cell Biol. 217, 2047–2058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Giordano, F. et al. PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494–1509 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chang, C. L. et al. Feedback regulation of receptor-induced Ca2+ signaling mediated by e-syt1 and nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813–825 (2013).

    PubMed  Google Scholar 

  59. Kumagai, K. & Hanada, K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett. 593, 2366–2377 (2019).

    CAS  PubMed  Google Scholar 

  60. Kannan, M., Lahiri, S., Liu, L. K., Choudhary, V. & Prinz, W. A. Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER. J. Lipid Res. 58, 553–562 (2017). This study demonstrates that phospholipid synthesis at MCSs promotes non-vesicular lipid transport at MCSs.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, Y. J., Guzman-Hernandez, M. L. & Balla, T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21, 813–824 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maeda, K. et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501, 257–261 (2013).

    CAS  PubMed  Google Scholar 

  63. Chang, C. L. et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J. Cell Biol. 218, 2583–2599 (2019).

    CAS  Google Scholar 

  64. Schuldiner, M. & Bohnert, M. A different kind of love - lipid droplet contact sites. Biochim. Biophys Acta 1862, 1188–1196 (2017).

    CAS  Google Scholar 

  65. Kerner, J. & Hoppel, C. Fatty acid import into mitochondria. Biochim. Biophys Acta. 1486, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  66. Michaud, M. & Jouhet, J. Lipid trafficking at membrane contact sites during plant development and stress response. Front. Plant Sci. 10, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S. & Ponka, P. Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110, 125–132 (2007).

    CAS  PubMed  Google Scholar 

  68. Das, A., Nag, S., Mason, A. B. & Barroso, M. M. Endosome-mitochondria interactions are modulated by iron release from transferrin. J. Cell Biol. 214, 831–845 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744–747 (1993). This study demonstrates that high Ca 2+ levels at ER–mitochondria MCSs are transiently generated next to the ER-localized Ca 2+ channel and are sensed by contacting mitochondria.

    CAS  PubMed  Google Scholar 

  70. Csordas, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010). This study provides direct evidence that high-Ca 2+ domains exist between the ER and mitochondria at MCSs and shows that these organelles must be tethered for Ca 2+ signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Csordas, G., Weaver, D. & Hajnoczky, G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523–540 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, X. et al. Redox signals at the ER-mitochondria interface control melanoma progression. EMBO J. 38, e100871 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Muallem, S., Chung, W. Y., Jha, A. & Ahuja, M. Lipids at membrane contact sites: cell signaling and ion transport. EMBO Rep. 18, 1893–1904 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Herrera-Cruz, M. S. & Simmen, T. Over six decades of discovery and characterization of the architecture at mitochondria-associated membranes (MAMs). Adv. Exp. Med. Biol. 997, 13–31 (2017).

    CAS  PubMed  Google Scholar 

  76. Hirabayashi, Y. et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kornmann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009). This study identifies an ER–mitochondria tethering complex in yeast that is found exclusively at these contact sites and plays a role in lipid exchange between the ER and mitochondria.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Booth, D. M., Enyedi, B., Geiszt, M., Varnai, P. & Hajnoczky, G. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63, 240–248 (2016). This study demonstrates how mitochondria-generated ROS participate in ER–mitochondria communication at MCSs and regulate Ca 2+ signalling and oxidative phosphorylation.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lock, J. T., Sinkins, W. G. & Schilling, W. P. Protein S-glutathionylation enhances Ca2+-induced Ca2+ release via the IP3 receptor in cultured aortic endothelial cells. J. Physiol. 590, 3431–3447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoboue, E. D., Sitia, R. & Simmen, T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death. Dis. 9, 331 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Gordaliza-Alaguero, I., Canto, C. & Zorzano, A. Metabolic implications of organelle-mitochondria communication. EMBO Rep. 20, e47928 (2019).

    PubMed  Google Scholar 

  82. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    CAS  PubMed  Google Scholar 

  83. Dickson, E. J. & Hille, B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476, 1–23 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    CAS  PubMed  Google Scholar 

  85. Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, C. L. & Liou, J. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum-plasma membrane junctions. J. Biol. Chem. 290, 14289–14301 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, Y. J., Guzman-Hernandez, M. L., Wisniewski, E. & Balla, T. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev. Cell 33, 549–561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lees, J. A. et al. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355, eaah6171 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Bian, X., Saheki, Y. & De Camilli, P. Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J. 37, 219–234 (2018).

    CAS  PubMed  Google Scholar 

  90. Saheki, Y. et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sohn, M. et al. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J. Cell Biol 217, 1797–1813 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Stuible, M. & Tremblay, M. L. In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol. 20, 672–679 (2010).

    CAS  PubMed  Google Scholar 

  93. Haj, F. G. et al. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLOS One 7, e36633 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Stefan, C. J. et al. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144, 389–401 (2011).

    CAS  PubMed  Google Scholar 

  95. Venditti, R. et al. The activity of Sac1 across ER-TGN contact sites requires the four-phosphate-adaptor-protein-1. J. Cell Biol. 218, 783–797 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zewe, J. P., Wills, R. C., Sangappa, S., Goulden, B. D. & Hammond, G. R. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 7, e35588 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Labbe, K., Murley, A. & Nunnari, J. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30, 357–391 (2014).

    CAS  PubMed  Google Scholar 

  98. Cho, B. et al. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat. Commun. 8, 15754 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Murley, A. et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife 2, e00422 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Korobova, F., Ramabhadran, V. & Higgs, H. N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467 (2013).

    CAS  PubMed  Google Scholar 

  101. Manor, U. et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. Elife 4, https://doi.org/10.7554/eLife.08828 (2015).

  102. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    CAS  PubMed  Google Scholar 

  104. Osellame, L. D. et al. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 129, 2170–2181 (2016).

    CAS  PubMed  Google Scholar 

  105. Arasaki, K. et al. A role for the ancient SNARE syntaxin 17 in regulating mitochondrial division. Dev. Cell 32, 304–317 (2015).

    CAS  PubMed  Google Scholar 

  106. Lee, J. E., Westrate, L. M., Wu, H., Page, C. & Voeltz, G. K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540, 139–143 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442 (2018).

    CAS  PubMed  Google Scholar 

  108. Rowland, A. A., Chitwood, P. J., Phillips, M. J. & Voeltz, G. K. ER contact sites define the position and timing of endosome fission. Cell 159, 1027–1041 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G. & Barral, Y. A mechanism for asymmetric segregation of age during yeast budding. Nature 454, 728–734 (2008). This study demonstrates that specialized ER–plasma membrane MCSs form a septin-dependent ER diffusion barrier in S. cerevisiae between mother and bud cells, which results in the asymmetric inheritance of cellular components.

    CAS  PubMed  Google Scholar 

  110. Clay, L. et al. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Elife 3, e01883 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Luedeke, C. et al. Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J. Cell Biol. 169, 897–908 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chao, J. T. et al. Polarization of the endoplasmic reticulum by ER-septin tethering. Cell 158, 620–632 (2014).

    CAS  PubMed  Google Scholar 

  113. Sugiyama, S. & Tanaka, M. Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proc. Natl Acad. Sci. USA 116, 8909–8918 (2019).

    CAS  PubMed  Google Scholar 

  114. Perez-Sancho, J. et al. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 26, 705–717 (2016).

    CAS  PubMed  Google Scholar 

  115. Tilsner, J., Nicolas, W., Rosado, A. & Bayer, E. M. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu. Rev. Plant Biol. 67, 337–364 (2016).

    CAS  PubMed  Google Scholar 

  116. Nicolas, W. J. et al. Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat. Plants 3, 17082 (2017).

    CAS  PubMed  Google Scholar 

  117. Kvam, E. & Goldfarb, D. S. Nucleus-vacuole junctions in yeast: anatomy of a membrane contact site. Biochem. Soc. Trans 34, 340–342 (2006).

    CAS  PubMed  Google Scholar 

  118. Dawaliby, R. & Mayer, A. Microautophagy of the nucleus coincides with a vacuolar diffusion barrier at nuclear-vacuolar junctions. Mol. Biol. Cell 21, 4173–4183 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Graef, M., Friedman, J. R., Graham, C., Babu, M. & Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24, 2918–2931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534–2544 (2013).

    CAS  PubMed  Google Scholar 

  121. Ktistakis, N. T. ER platforms mediating autophagosome generation. Biochim. Biophys Acta https://doi.org/10.1016/j.bbalip.2019.03.005 (2019).

  122. Okumura, K. et al. Norepinephrine-induced 1,2-diacylglycerol accumulation and change in its fatty acid composition in the isolated perfused rat heart. Mol. Cell Biochem. 93, 173–178 (1990).

    CAS  PubMed  Google Scholar 

  123. Nascimbeni, A. C. et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018–2033 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhao, Y. G. et al. The ER contact proteins vapa/b interact with multiple autophagy proteins to modulate autophagosome biogenesis. Curr. Biol. 28, 1234–1245 (2018). This study identifies proteins that link the ER and autophagosomal regulators at contact sites within growing autophagosomes.

    CAS  PubMed  Google Scholar 

  125. Zachari, M. & Ganley, I. G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 61, 585–596 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Zhao, Y. G. et al. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol. Cell 67, 974–989 (2017).

    CAS  PubMed  Google Scholar 

  127. Tabara, L. C. & Escalante, R. VMP1 Establishes er-microdomains that regulate membrane contact sites and autophagy. PLOS One 11, e0166499 (2016).

    PubMed  PubMed Central  Google Scholar 

  128. Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719–1735 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Valverde, D. P. et al. ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798 (2019).

    CAS  PubMed  Google Scholar 

  130. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    CAS  PubMed  Google Scholar 

  131. Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    PubMed  Google Scholar 

  132. Biazik, J., Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 11, 439–451 (2015).

    PubMed  PubMed Central  Google Scholar 

  133. Elkin, S. R., Lakoduk, A. M. & Schmid, S. L. Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr 166, 196–204 (2016).

    PubMed  PubMed Central  Google Scholar 

  134. Eden, E. R., White, I. J., Tsapara, A. & Futter, C. E. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat. Cell Biol. 12, 267–272 (2010). This study shows that, at MCSs, PTP1B in the ER acts in trans on epidermal growth factor in endosomes.

    CAS  PubMed  Google Scholar 

  135. Stuible, M. et al. PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2. J. Biol. Chem. 285, 23899–23907 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dong, R. et al. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166, 408–423 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Allison, R. et al. Defects in er-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216, 1337–1355 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Salogiannis, J., Egan, M. J. & Reck-Peterson, S. L. Peroxisomes move by hitchhiking on early endosomes using the novel linker protein PxdA. J. Cell Biol. 212, 289–296 (2016). This study shows that peroxisomes can be transported in cells by being linked at MCSs to early endosomes, which are themselves moved by microtubule-dependent motors.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Friedman, J. R., Webster, B. M., Mastronarde, D. N., Verhey, K. J. & Voeltz, G. K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190, 363–375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Jongsma, M. L. et al. An ER-associated pathway defines endosomal architecture for controlled cargo transport. Cell 166, 152–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009). This study shows that late endosomes can be attached to the ER via MCSs or to motor proteins by a cholesterol-regulated switch.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Raiborg, C. et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520, 234–238 (2015). This study shows that ER–late endosome MCSs regulate loading of the microtubule-dependent motor kinesin 1 onto the late endosomes, controlling their movement to the plasma membrane and, as a result, neurite outgrowth.

    CAS  PubMed  Google Scholar 

  143. Knoblach, B. et al. An ER-peroxisome tether exerts peroxisome population control in yeast. EMBO J. 32, 2439–2453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Knoblach, B. & Rachubinski, R. A. Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae. Traffic 16, 298–309 (2015).

    CAS  PubMed  Google Scholar 

  145. Swayne, T. C. et al. Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994–1999 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pernice, W. M., Vevea, J. D. & Pon, L. A. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7, 10595 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Eisenberg-Bord, M. et al. Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. J. Cell Biol 217, 269–282 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Teixeira, V. et al. Regulation of lipid droplets by metabolically controlled Ldo isoforms. J. Cell Biol. 217, 127–138 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885 (2018). This study demonstrates that, in brown adipose tissue, mitochondria that from contacts with lipid droplets are metabolically different from those that do not.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bravo, R. et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J. Cell Sci. 124, 2143–2152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Gutierrez, T. & Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium. 70, 64–75 (2018).

    CAS  PubMed  Google Scholar 

  152. Michaud, M., Prinz, W. A. & Jouhet, J. Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J. 284, 376–390 (2017).

    CAS  PubMed  Google Scholar 

  153. Michaud, M. et al. AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr. Biol. 26, 627–639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003).

    CAS  PubMed  Google Scholar 

  155. Garbarino, J. et al. Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid-mediated cell death. J. Biol. Chem. 284, 30994–31005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2018).

    Google Scholar 

  157. Hariri, H. et al. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 19, 57–72 (2018).

    CAS  PubMed  Google Scholar 

  158. Henne, W. M. et al. Mdm1/Snx13 is a novel ER-endolysosomal interorganelle tethering protein. J. Cell Biol. 210, 541–551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Roelants, F. M. et al. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol. Biol. Cell 29, 2128–2136 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Omnus, D. J., Manford, A. G., Bader, J. M., Emr, S. D. & Stefan, C. J. Phosphoinositide kinase signaling controls ER-PM cross-talk. Mol. Biol. Cell 27, 1170–1180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Perez-Sancho, J. et al. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 168, 132–143 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, E. et al. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl Acad. Sci. USA 116, 1420–1429 (2019).

    CAS  PubMed  Google Scholar 

  164. Schapire, A. L. et al. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20, 3374–3388 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yamazaki, T., Kawamura, Y., Minami, A. & Uemura, M. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20, 3389–3404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bockler, S. & Westermann, B. Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev. Cell 28, 450–458 (2014).

    PubMed  Google Scholar 

  167. Kawano, S. et al. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J. Cell Biol. 217, 959–974 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu, W. et al. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J. 35, 1368–1384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Missiroli, S. et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 16, 2415–2427 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, X., Wen, X. & Klionsky, D. J. ER-mitochondria contacts are required for pexophagy in Saccharomyces cerevisiae. Contact (Thousand Oaks) 2, https://journals.sagepub.com/doi/10.1177/2515256418821584 (2018).

  171. Mattiazzi Usaj, M. et al. Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J. Mol. Biol. 427, 2072–2087 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Roberts, P. et al. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 129–141 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Datta, S., Liu, Y., Hariri, H., Bowerman, J. & Henne, W. M. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. J. Cell Biol. 218, 1335–1351 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Murley, A. et al. Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J. Cell Biol. 216, 2679–2689 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, Z. W. et al. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc. Diabetol. 12, 158 (2013).

    PubMed  PubMed Central  Google Scholar 

  176. Verfaillie, T. et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19, 1880–1891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Raturi, A. et al. TMX1 determines cancer cell metabolism as a thiol-based modulator of ER-mitochondria Ca2+ flux. J. Cell Biol. 214, 433–444 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Gilady, S. Y. et al. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 15, 619–629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Marino, M. et al. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum. Mol. Genet. 24, 1843–1855 (2015).

    CAS  PubMed  Google Scholar 

  180. Debattisti, V., Gerencser, A. A., Saotome, M., Das, S. & Hajnoczky, G. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 21, 1667–1680 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Eisenberg-Bord, M. et al. The endoplasmic reticulum-mitochondria encounter structure complex coordinates coenzyme Q biosynthesis. Contact (Thousand Oaks) 2, https://doi.org/10.1177/2515256418825409 (2019).

    Article  Google Scholar 

  183. Mourier, A. et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J. Cell Biol. 208, 429–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Subramanian, K. et al. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J. Cell Biol. 218, 1353–1369 (2019).

    PubMed  PubMed Central  Google Scholar 

  185. Simmen, T. & Herrera-Cruz, M. S. Plastic mitochondria-endoplasmic reticulum (ER) contacts use chaperones and tethers to mould their structure and signaling. Curr. Opin. Cell Biol. 53, 61–69 (2018).

    CAS  PubMed  Google Scholar 

  186. Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003).

    CAS  PubMed  Google Scholar 

  187. Lynes, E. M. et al. Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling. J. Cell Sci. 126, 3893–3903 (2013).

    CAS  PubMed  Google Scholar 

  188. Eckenrode, E. F., Yang, J., Velmurugan, G. V., Foskett, J. K. & White, C. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J. Biol. Chem. 285, 13678–13684 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Xu, L. et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol. Rep. 39, 985–992 (2018).

    CAS  PubMed  Google Scholar 

  190. Mebratu, Y. A. et al. Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat. Commun. 8, 803 (2017).

    PubMed  PubMed Central  Google Scholar 

  191. Giorgi, C. et al. p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc. Natl Acad. Sci. USA 112, 1779–1784 (2015).

    CAS  PubMed  Google Scholar 

  192. Giorgi, C. et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330, 1247–1251 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Doghman-Bouguerra, M. et al. FATE1 antagonizes calcium- and drug-induced apoptosis by uncoupling ER and mitochondria. EMBO Rep. 17, 1264–1280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Chami, M. et al. Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol. Cell 32, 641–651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. van Vliet, A. R. et al. The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling. Mol. Cell 65, 885–899 (2017).

    PubMed  Google Scholar 

  196. Philpott, C. C. & Jadhav, S. The ins and outs of iron: escorting iron through the mammalian cytosol. Free. Radic. Biol. Med. 133, 112–117 (2019).

    CAS  PubMed  Google Scholar 

  197. Kambe, T., Matsunaga, M. & Takeda, T. A. Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int. J. Mol. Sci. 18, E2179 (2017).

    PubMed  Google Scholar 

  198. Williamson, C. D. & Colberg-Poley, A. M. Access of viral proteins to mitochondria via mitochondria-associated membranes. Rev. Med. Virol. 19, 147–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Levy, A., Zheng, J. Y. & Lazarowitz, S. G. Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25, 2018–2025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Derre, I., Swiss, R. & Agaisse, H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLOS Pathog. 7, e1002092 (2011). This study shows how the intracellular pathogen Chlamydia trachomatis generates MCSs between the ER and the membrane of the inclusion that the bacteria propagate in, by hijacking CERT and other host MCS proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Elwell, C. A. et al. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLOS Pathog. 7, e1002198 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Stoica, R. et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014). This study shows that TDP-43, which is linked to amyotrophic lateral sclerosis, regulates ER–mitochondria MCSs and cellular Ca 2+ homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Bernard-Marissal, N., Medard, J. J., Azzedine, H. & Chrast, R. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain 138, 875–890 (2015).

    PubMed  Google Scholar 

  204. Nishimura, A. L. et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 75, 822–831 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Area-Gomez, E. et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol. 175, 1810–1816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Zampese, E. et al. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl Acad. Sci. USA 108, 2777–2782 (2011).

    CAS  PubMed  Google Scholar 

  208. Lim, Y., Cho, I. T., Schoel, L. J., Cho, G. & Golden, J. A. Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 78, 679–696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Rampoldi, L. et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat. Genet. 28, 119–120 (2001).

    CAS  PubMed  Google Scholar 

  210. Ueno, S. et al. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat. Genet. 28, 121–122 (2001).

    CAS  PubMed  Google Scholar 

  211. Guardia-Laguarta, C. et al. -Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Cali, T., Ottolini, D., Negro, A. & Brini, M. α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914–17929 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Lesage, S. et al. Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am. J. Hum. Genet. 98, 500–513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sano, R. et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009). This study emonstrates that accumulation of the ganglioside monosialotetrahexosylganglioside at ER–mitochondria MCSs induces Ca 2+-mediated apoptotic signalling that links ER stress and apoptosis in neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Szado, T. et al. Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc. Natl Acad. Sci. USA 105, 2427–2432 (2008).

    CAS  PubMed  Google Scholar 

  216. Marchi, S. et al. Selective modulation of subtype III IP(3)R by Akt regulates ER Ca(2)(+) release and apoptosis. Cell Death Dis. 3, e304 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Scorrano, L. et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 (2003).

    CAS  PubMed  Google Scholar 

  218. Anelli, T. et al. Ero1alpha regulates Ca2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid. Redox Signal. 16, 1077–1087 (2012).

    CAS  PubMed  Google Scholar 

  219. Kakihana, T., Nagata, K. & Sitia, R. Peroxides and peroxidases in the endoplasmic reticulum: integrating redox homeostasis and oxidative folding. Antioxid. Redox Signal. 16, 763–771 (2012).

    CAS  PubMed  Google Scholar 

  220. Betz, C. et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl Acad. Sci. USA 110, 12526–12534 (2013).

    CAS  PubMed  Google Scholar 

  221. Bononi, A. et al. Identification of PTEN at the ER and MAMs and its regulation of Ca2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20, 1631–1643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Avalle, L. et al. STAT3 localizes to the ER, acting as a gatekeeper for ER-mitochondrion Ca2+ fluxes and apoptotic responses. Cell Death Differ. 26, 932–942 (2019).

    CAS  PubMed  Google Scholar 

  223. Tubbs, E. et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279–3294 (2014).

    CAS  PubMed  Google Scholar 

  224. Thoudam, T. et al. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571–586 (2019).

    CAS  PubMed  Google Scholar 

  225. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases. The authors thank Mary Weston for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William A. Prinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks T. Levine, T. Simmen and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Multivesicular bodies

(MVBs). Endocytic compartments containing internal luminal vesicles.

Store-operated calcium entry

The regulated entry of Ca2+ into cells in response to the depletion of Ca2+ in the endoplasmic reticulum.

ER stress

An accumulation of unfolded proteins in the endoplasmic reticulum (ER) that affects ER function.

Ceramides

Lipids used to generate complex sphingolipids, one of the major types of lipid in cellular membranes.

Phosphatidylinositol kinases

Kinases that phosphorylate phosphatidylinositol on the inositol moiety.

Inositol 1,4,5-trisphosphate receptors

(IP3Rs). Endoplasmic Ca2+ channels activated by inositol 1,4,5-trisphosphate, an important signalling molecule formed by the cleavage of phosphatidylinositol 4,5-bisphosphate.

ER–mitochondria encounter structure

(ERMES). An endoplasmic reticulum (ER)–mitochondrial tethering complex found in yeasts.

Sphingolipids

A major type of lipids found in cellular membranes.

Septins

A group of GTP-binding proteins that can assemble into cytoskeletal-like structures.

Interscapular

The region between the shoulder blades.

Brown adipose tissue

A type of adipose tissue that serves as a site of thermogenesis.

Galactoglycerolipids

A family of glycerolipids that contain one or more sugars linked directly to the glycerol moiety.

Selective autophagy

A degradative pathway in which particular organelles or aggregates are degraded in lysosomes and vacuoles in development and in response to nutrient stress.

Unfolded protein response

Stress response pathways induced by endoplasmic reticulum stress.

TDP-43

TAR DNA-binding protein 43 (TDP-43) is a 43-kDa RNA and DNA-binding protein that is pathologically linked to amyotrophic lateral sclerosis and frontotemporal dementia.

Presenilin

A membrane protein thought to contribute to the development of Alzheimer disease.

Chorea-acanthocytosis

A rare neurological disorder that affects body movement.

α-Synuclein

A protein predominantly expressed in neurons that can cluster into insoluble aggregates in Parkinson disease and other neurogenerative disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinz, W.A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21, 7–24 (2020). https://doi.org/10.1038/s41580-019-0180-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-019-0180-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing