Abstract
A sedentary lifestyle, chronic inflammation and leukocytosis increase atherosclerosis; however, it remains unclear whether regular physical activity influences leukocyte production. Here we show that voluntary running decreases hematopoietic activity in mice. Exercise protects mice and humans with atherosclerosis from chronic leukocytosis but does not compromise emergency hematopoiesis in mice. Mechanistically, exercise diminishes leptin production in adipose tissue, augmenting quiescence-promoting hematopoietic niche factors in leptin-receptor-positive stromal bone marrow cells. Induced deletion of the leptin receptor in Prrx1-creERT2; Leprfl/fl mice reveals that leptinâs effect on bone marrow niche cells regulates hematopoietic stem and progenitor cell (HSPC) proliferation and leukocyte production, as well as cardiovascular inflammation and outcomes. Whereas running wheel withdrawal quickly reverses leptin levels, the impact of exercise on leukocyte production and on the HSPC epigenome and transcriptome persists for several weeks. Together, these data show that physical activity alters HSPCs via modulation of their niche, reducing hematopoietic output of inflammatory leukocytes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data are included in this published article and its supplementary information files. Raw sequencing data are available from Gene Expression Omnibus under accession numbers GSE110639 and GSE124799. Raw data other than sequencing data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are available for Figs. 1â6.
References
Ridker, P. M. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 37, 1720â1722 (2016).
Ridker, P. M. et al. Anti-inflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119â1131 (2017).
Madjid, M., Awan, I., Willerson, J. T. & Casscells, S. W. Leukocyte count and coronary heart disease: implications for risk assessment. J. Am. Coll. Cardiol. 44, 1945â1956 (2004).
Nahrendorf, M. & Swirski, F. K. Lifestyle effects on hematopoiesis and atherosclerosis. Circ. Res. 116, 884â894 (2015).
Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104â116 (2015).
Heidt, T. et al. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20, 754â758 (2014).
McAlpine, C. S. et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 566, 383â387 (2019).
Nagareddy, P. R. et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 19, 821â835 (2014).
Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327â334 (2014).
Lavie, C. J., Ozemek, C., Carbone, S., Katzmarzyk, P. T. & Blair, S. N. Sedentary behavior, exercise, and cardiovascular health. Circ. Res. 124, 799â815 (2019).
Lee, D. C. et al. Leisure-time running reduces all-cause and cardiovascular mortality risk. J. Am. Coll. Cardiol. 64, 472â481 (2014).
Duggal, N. A., Niemiro, G., Harridge, S. D. R., Simpson, R. J. & Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity. Nat. Rev. Immunol. 19, 563â572 (2019).
Meissner, M. et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218, 323â329 (2011).
Fukao, K. et al. Voluntary exercise ameliorates the progression of atherosclerotic lesion formation via anti-inflammatory effects in apolipoprotein E-deficient mice. J. Atheroscler. Thromb. 17, 1226â1236 (2010).
Pellegrin, M. et al. Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med. Sci. Sports Exerc. 41, 2128â2135 (2009).
de Visser, L., van den Bos, R. & Spruijt, B. M. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav. Brain Res. 160, 382â388 (2005).
Asada, N., Takeishi, S. & Frenette, P. S. Complexity of bone marrow hematopoietic stem cell niche. Int. J. Hematol. 106, 45â54 (2017).
Abella, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol. 13, 100â109 (2017).
Bennett, B. D. et al. A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6, 1170â1180 (1996).
Hirose, H. et al. Serum leptin level: possible association with haematopoiesis in adolescents, independent of body mass index and serum insulin. Clin. Sci. 94, 633â636 (1998).
Rostas, I. et al. In middle-aged and old obese patients, training intervention reduces leptin level: a meta-analysis. PLoS ONE 12, e0182801 (2017).
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154â168 (2014).
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457â462 (2012).
Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18, 782â96 (2016).
Mercier, F. E., Sykes, D. B. & Scadden, D. T. Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1STEM mouse. Stem Cell Rep. 6, 985â992 (2016).
Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380â1385 (2018).
Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 345, 943â949 (2014).
Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193â1203 (2016).
Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167, 1310â1322 (2016).
Golan, K., Kollet, O. & Lapidot, T. Dynamic cross talk between S1P and CXCL12 regulates hematopoietic stem cells migration, development and bone remodeling. Pharmaceuticals 6, 1145â1169 (2013).
Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15, 243â256 (2014).
Tanaka, Y. et al. Exhaustive exercise reduces tumor necrosis factor-alpha production in response to lipopolysaccharide in mice. Neuroimmunomodulation 17, 279â286 (2010).
Mackinnon, L. T., Chick, T. W., van As, A. & Tomasi, T. B. The effect of exercise on secretory and natural immunity. Adv. Exp. Med. Biol. 216A, 869â876 (1987).
Shirato, K. et al. Regular voluntary exercise potentiates interleukin-1β and interleukin-18 secretion by increasing caspase-1 expression in murine macrophages. Mediators Inflamm. 2017, 9290416 (2017).
Wallerstedt, S. M., Eriksson, A. L., Niklason, A., Ohlsson, C. & Hedner, T. Serum leptin and myocardial infarction in hypertension. Blood Press. 13, 243â246 (2004).
Rajendran, K., Devarajan, N., Ganesan, M. & Ragunathan, M. Obesity, inflammation and acute myocardial infarctionâexpression of leptin, IL-6 and high sensitivity-CRP in a Chennai-based population. Thromb. J. 10, 13 (2012).
Engström, G., Melander, O. & Hedblad, B. Leukocyte count and incidence of hospitalizations due to heart failure. Circ. Heart Fail. 2, 217â222 (2009).
Tsujioka, H. et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J. Am. Coll. Cardiol. 54, 130â138 (2009).
Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161â166 (2013).
Verhoeven, B. A. et al. Athero-Express: differential atherosclerotic plaque expression of mRNA and protein in relation to cardiovascular events and patient characteristics. Rationale and design. Eur. J. Epidemiol. 19, 1127â1133 (2004).
Kelesidis, T., Kelesidis, I., Chou, S. & Mantzoros, C. S. Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann. Intern. Med. 152, 93â100 (2010).
De Lisio, M. & Parise, G. Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. J. Appl. Physiol. 113, 1576â1584 (2012).
Baker, J. M., De Lisio, M. & Parise, G. Endurance exercise training promotes medullary hematopoiesis. FASEB J. 25, 4348â4357 (2011).
Agha, N. H. et al. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β2-adrenergic receptor. Brain Behav. Immun. 68, 66â75 (2018).
Soppi, E., Varjo, P., Eskola, J. & Laitinen, L. A. Effect of strenuous physical stress on circulating lymphocyte number and function before and after training. J. Clin. Lab. Immunol. 8, 43â46 (1982).
Johannsen, N. M. et al. Effect of different doses of aerobic exercise on total white blood cell (WBC) and WBC subfraction number in postmenopausal women: results from DREW. PLoS ONE 7, e31319 (2012).
Mabuchi, T. et al. Association between serum leptin concentration and white blood cell count in middle-aged Japanese men and women. Diabetes Metab. Res. Rev. 21, 441â447 (2005).
Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J. Am. Coll. Cardiol. 74, 1376â1414 (2019).
Ionita, M. G. et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler. Thromb. Vasc. Biol. 30, 1842â1848 (2010).
Halliday, A. et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet 363, 1491â1502 (2004).
ten Berg, M. J. et al. Linking laboratory and medication data: new opportunities for pharmacoepidemiological research. Clin. Chem. Lab. Med. 45, 13â19 (2007).
Lam, S. W., Leenen, L. P. H., Solinge, W. W., Hietbrink, F. & Huisman, A. Evaluation of hematological parameters on admission for the prediction of 7-day in-hospital mortality in a large trauma cohort. Clin. Chem. Lab. Med. 49, 493â499 (2011).
Groeneveld, K. M., Heeres, M., Leenen, L. P. H., Huisman, A. & Koenderman, L. Immunophenotyping of posttraumatic neutrophils on a routine haematology analyser. Mediators Inflamm. 2012, 509513 (2012).
Mignone, J. L., Kukekov, V., Chiang, A. S., Steindler, D. & Enikolopov, G. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469, 311â324 (2004).
Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829â834 (2010).
DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608â2613 (2001).
Bilic-Curcic, I. et al. Visualizing levels of osteoblast differentiation by a two-color promoter-GFP strategy: type I collagen-GFPcyan and osteocalcin-GFPtpz. Genesis 43, 87â98 (2005).
Bjorklund, M. M. et al. Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ. Res. 114, 1684â1689 (2014).
Rittirsch, D., Huber-Lang, M. S., Flierl, M. A. & Ward, P. A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31â36 (2008).
Konstantinides, S., Schäfer, K., Neels, J. G., Dellas, C. & Loskutoff, D. J. Inhibition of endogenous leptin protects mice from arterial and venous thrombosis. Arterioscler. Thromb. Vasc. Biol. 24, 2196â2201 (2004).
Surwit, R. S., Edwards, C. L., Murthy, S. & Petro, A. E. Transient effects of long-term leptin supplementation in the prevention of diet-induced obesity in mice. Diabetes 49, 1203â1208 (2000).
Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637â643 (2013).
Orr, J. S., Kennedy, A. J. & Hasty, A. H. Isolation of adipose tissue immune cells. J. Vis. Exp. 22, e50707 (2013).
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 1â9 (2015).
Mehta, S. et al. Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140. Sci. Immunol. 2, eaag3160 (2017).
Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 28, 1838â1844 (2012).
John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264â268 (2011).
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139â140 (2010).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417â419 (2017).
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288â4297 (2012).
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284â287 (2012).
Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468â1486 (2010).
Scheller, E. L. et al. Use of osmium tetroxide staining with microcomputerized tomography to visualize and quantify bone marrow adipose tissue in vivo. Methods Enzymol. 537, 123â139 (2014).
Acknowledgements
We thank M. Handley, E. Surette and A. Galvin of the HSCI-CRM Flow Cytometry Core Facility, Massachusetts General Hospital, for assistance with cell sorting, the Center for Skeletal Research Imaging and Biomechanical Testing Core (National Institutes of Health P30 AR066261), Massachusetts General Hospital, for bone histology and µCT imaging, the Bioanalytics Core at the Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, for mass spectrometry analysis, the BPF Next-Gen Sequencing Core Facility at Harvard Medical School for their support for RNA-sequencing and K. Joyes for editing the manuscript. This work was funded in part by federal funds from the National Institutes of Health (HL142494, HL139598, HL131478, HL128264, AI07087, DK040561 and T32HL076136), the European Unionâs Horizon 2020 research and innovation program (grant agreement no. 667837), the Deutsche Forschungsgemeinschaft (CR 603/1-1, HO 5279/1-2 and RO 5071/1-1) and a fellowship from the Netherlands Organisation for Scientific Research (Rubicon Grant: 835.15.014). We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Author information
Authors and Affiliations
Contributions
V.F., D.R. and M.N. designed experiments. V.F., D.R., G.C., N.S., M.J.S., H.A., S.C., F.F.H., F.J., I.D.v.K., F.H., L.H., C.S.M., G.S.M., S.Z., J.G., Y.I., S.P.S., G.R.W., I.-H.L. and K.G. performed experiments and collected data. V.F., D.R., G.C., N.S., F.J., I.D.v.K., G.P., S.C.A.d.J., R.I.S., I.-H.L., J.M. and K.N. analyzed data. V.F., M.J.S., D.R., S.C., F.F.H. and G.S.M. performed surgeries. V.F., D.R., G.C., N.S., H.A., P.L., G.P., P.R., D.T.S., K.N., K.L.J., F.S. and M.N. discussed results and strategy. V.F., D.R. and M.N. wrote the manuscript, which was edited by all co-authors. M.N. supervised, directed and managed the study.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Michael Basson was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Effects of 6 weeks of running.
(a) Mean distance run per hour (nâ=â24 animals). (b) Mean daily distance over the course of 6 weeks (nâ=â16 animals). (c) changes in sedentary (nâ=â12) and exercising mice (nâ=â17, **pâ=â0.0076, two-tailed U test) compared to initial six weeks prior. (d) Heart weight adjusted for tibia length (nâ=â9 animals per group). (e) Food consumption during the last week of exercise (***pâ=â0.0002, nâ=â9 animals per group, two-tailed Studentâs t-test). (f) Flow cytometry gating strategy for leukocytes in skeletal muscle. (g) Total leukocytes, neutrophils, monocytes and macrophages per mg muscle tissue by flow cytometry (nâ=â7 animals for sedentary, nâ=â12 for exercise). (h) Representative microCT images of the proximal metaphysis and mid-diaphysis tibia of exercising and sedentary mice. (i) Parameters of bone microstructure, including trabecular and cortical thickness, bone mineral density and polar moment of inertia by µCT (nâ=â6 animals per group). (j) Representative Runx2 staining of tibial proximal metaphysis. Osteoblast surface per bone surface (Ob.S/BS, nâ=â6 animals per group). (k) Bone formation rate as observed by incorporation of calcein (20âmg/kg, 7 days prior) and alizarin red (30âmg/kg, 2 days prior to sacrifice) during bone mineralization at the diaphysis of femurs. Distance of fluorescent label indicated by the arrow demarcates the mineralization front at different times of administration. â#â denotes medullary cavity and â##â trabecular bone (nâ=â4 animals). Data are meanâ±âs.e.m. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 2 Increased stem and progenitor cell quiescence after 6 weeks of exercise.
Mice were given 5-bromo-2- deoxyuridine (BrdU) intraperitoneally (1âmg). BrdU incorporation in (a) long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), (b) common myeloid progenitors (CMP, ***pâ=â0.00026), megakaryocyte erythroid progenitors (MEP, ***pâ=â1.028âÃâ10â5), granulocyte macrophage progenitors (GMP, ***pâ=â4.17âÃâ10â4, all nâ=â14 animals for sedentary, nâ=â15 for exercise), macrophage and dendritic cell progenitors (MDP, **pâ=â0.0070, nâ=â7 animals per group) and B cell progenitors (B cell prog, **pâ=â0.0065, nâ=â6 animals per group) were analyzed 22âhours later (two-tailed U test for CMP, MDP and B cell prog; two-tailed Studentâs for MEPs and GMPs). (c) Flow cytometry gating for hematopoietic progenitors and representative flow cytometry plots of BrdU gating. (d) Cell cycle analysis in LSK assessed by Ki-67/ DAPI staining. Representative flow cytometry dot plots of + LSK (*pâ=â0.038, nâ=â7 animals for sedentary, nâ=â12 for exercise, 2 independent experiments, two-tailed U test). (e) Experimental outline for BrdU pulse-chase experiment. Mice received BrdU in drinking water for 3 weeks (baseline, nâ=â3 animals) prior to 3 weeks of exercise. (f) BrdU incorporation into LT-HSC, ST-HSC, multipotent progenitors (MPP, **pâ=â0.0074), CMP (pâ=â0.14), MEP (*pâ=â0.034) and GMP (pâ=â0.07, nâ=â9 animals for sedentary, nâ=â4 for exercise, two-tailed U test comparing sedentary and exercise). (g) Representative images of granulocyte macrophage colonies from sedentary and running mice. (h) Bone marrow unit assay (CFU) of bone marrow mononuclear cells (BMNCs) for complete colonies (*pâ=â0.036, nâ=â6 animals per group, 2 independent experiments, two-tailed U-test). (i) Number of HSPC per femur in sedentary and exercising mice (nâ=â15 animals per group). (j) Number of marrow leukocytes at Zeitgeber 13: B cells (**pâ=â0.0089), CD4 T cells, CD8 T cells (*pâ=â0.048), neutrophils (*pâ=â0.044), monocytes (*pâ=â0.041), eosinophils (*pâ=â0.019, nâ=â5 animals for sedentary, nâ=â6 for exercise) and NK cells (**pâ=â0.00099, nâ=â3 per group, two-tailed U test). (k) Numbers of platelets (*pâ=â0.016, two-tailed Studentâs), red blood cells (RBC), hemoglobin (HGB) and hematocrit (HCT, nâ=â12 animals for sedentary and nâ=â11 for exercise, 4 independent experiments). Data are meanâ±âs.e.m.We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 3 Neutral running effects on bone marrow neurotransmitters, corticosterone and selected hematopoietic niche cells.
(a) Mass spectrometry of norepinephrine and acetylcholine in the bone marrow after 6 weeks of exercise (nâ=â5 animals per group). (b) Choline acetyltransferase (ChAT) expression by bone marrow CD45+ leukocytes (nâ=â3 animals per group). (c) Experimental outline, administration of a competitive antagonist of the muscarinic acetylcholine receptors (atropine) during 3 weeks exercise. Leukocytes in circulation (nâ=â5 animals for Sed-Saline, nâ=â3 for Ex-Saline, nâ=â2 for Ex-Atropine). (d) Plasma corticosterone at Zeitgeber time (ZG 1 (nâ=â11 animals for sedentary, nâ=â8 for exercise), ZG 7 (nâ=â8 sedentary, nâ=â11 exercise), ZG 13 (nâ=â6 sedentary, nâ=â9 exercise) after exercise for 6 weeks. (e) Nestin+ stromal cells (nâ=â6 animals for sedentary, nâ=â8 for exercise, 3 independent experiments), (f) OCN+ osteoblasts, (nâ=â9 animals per group, 4 independent experiments) (g) endothelial cells (nâ=â8 animals for sedentary, nâ=â10 for exercise, 6 independent experiments) and (h) bone marrow macrophages (nâ=â5 animals per group, 2 independent experiments) were isolated by fluorescence-activated cell sorting. GFP stromal reporter mice either had access to exercise wheels for 6 weeks or remained sedentary. Representative dot plots are shown. Expression of Cxcl12, Vcam1, Kitl and Angpt1 was assessed by qPCR, ND: not detectable. (i) Numbers of stromal niche cells in sedentary and exercising mice (nâ=â9 and nâ=â8 for LepR+, nâ=â6 and nâ=â8 for Nestin+, nâ=â9 and nâ=â9 for OCN+, nâ=â8 and nâ=â10 for CD31high, nâ=â5 and nâ=â5 animals for sedentary and exercise, respectively). (j) Gene expression of several niche factors in total bone marrow by qPCR (nâ=â8 animals for sedentary for Ccl2 and Pf4, nâ=â12 for sedentary for Tgfb, Csf1, nâ=â16 for sedentary for Il7, Csf2, Csf3, nâ=â13 for exercise for Ccl2, Tgfb, nâ=â19 for exercise for Il7, Csf1, Csf2, Csf3, 4 independent experiments). (k) Markers for osteolineage cells (Sp7,Bglap, Runx2) and adipocytes (Lpl, Fabp4) by qPCR in total bone marrow (nâ=â8 animals per group, 2 independent experiments). All mRNA levels were normalized to Actb Ct values. Data are meanâ±âs.e.m., where appropriate. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 4 Exercise reduces visceral adipose tissue macrophages.
(a) Visceral adipose tissue (VAT) per mouse adjusted for (BW; ***pâ=â0.00069, nâ=â9 animals for sedentary, nâ=â7 for exercise, 2 independent experiments, two-tailed U test). (b) Cytokine production by visceral adipose tissue by qPCR (*pâ=â0.034, **pâ=â0.0087, nâ=â6 animals per group, 2 independent experiments, two-tailed U test). (c) Macrophages per mg VAT. Representative dot plots are shown (*pâ=â0.016, nâ=â5 animals for sedentary, nâ=â4 for exercise, two-tailed U test). (d) Experimental outline for e. Mice received BrdU in drinking water for 3 weeks (baseline, nâ=â4 animals) prior to 3 weeks of exercise. (e) BrdU incorporation into VAT macrophages (*pâ=â0.045, nâ=â9 animals for sedentary, nâ=â7 for exercise, 2 independent experiments, two-tailed U test comparing sedentary and exercise). Representative dot plots are shown. (f) Longitudinal sections of tibias were stained by perilipin (red) and counterstained by DAPI (blue). (g) Quantification of adipocyte numbers and size in the proximal metaphysis of tibias (**pâ=â0.0055, nâ=â8 animals for sedentary, nâ=â9 for exercise, 3 independent experiments, two-tailed U-test). (h) In vitro adipocyte differentiation assay of bone marrow stromal cells from all long bones and pelvic bones. Representative images with 100x magnification are shown (nâ=â4 animals per group). (i,j) Visualization of marrow adipose tissue in tibias by osmium stain by μCT and marrow adipose tissue (MAT) per marrow volume (MV) (nâ=â3 animals per group). (k) Leptin expression by qPCR in visceral adipose tissue (VAT; **pâ=â0.0022, nâ=â6 animals per group, two-tailed U test) and bone marrow (BM; nâ=â3 animals for sedentary, nâ=â6 for exercise). mRNA levels were normalized to Actb Ct values. Data are meanâ±âs.e.m. (l) Lack of correlation between tibial adipocyte size and leptin concentration (R2â=â0.0002, Pâ=â0.96, nâ=â17 animals, linear regression analysis). We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 5 Leptin supplementation and antibody neutralization.
(a) Leptin levels in blood (*pâ=â0.19 for both sed-leptin vs ex-saline and ex-saline vs ex-leptin, one-way analysis of variance with Sidakâs post hoc test) and bone marrow (*pâ=â0.013 sed-leptin vs ex-saline, *pâ=â0.042 sed-saline vs ex-saline, **pâ=â0.0038 ex-saline versus ex-leptin, nâ=â12 animals for sed-saline and ex-saline, nâ=â10 for sed-leptin, nâ=â13 for ex-leptin, 5 independent experiments, with Dunnâs post hoc test) as measured by ELISA. (b) LSK proliferation 22âh after intraperitoneal injection of BrdU (*pâ=â0.047 sed-saline versus ex-sal, Pâ=â0.05 ex-saline versus ex-leptin, ***pâ=â0.00031 sed-leptin versus ex-sal, nâ=â12 animals for sed-saline and ex-saline, nâ=â10 for sed-leptin, nâ=â13 for ex-leptin, 5 independent experiments, one-way analysis of variance with Sidakâs post hoc test), LSK numbers and (c) expression of hematopoietic factors in bone marrow of exercising and sedentary mice implanted with osmotic minipumps as described in Fig. 2h (*pâ=â0.016 and **pâ=â0.0026 for Cxcl12, *pâ=â0.025 sed-saline versus ex-saline and *pâ=â0.046 ex-saline versus ex-leptin for Vcam1, ***pâ=â0.00074 ex-saline versus ex-leptin and pâ=â0.09 sed-saline versus ex-saline for Angpt1, nâ=â12 animals for sed-saline and ex-saline, nâ=â10 for sed-leptin, nâ=â13 for Ex-Leptin). (d) Running distance with either saline or leptin and access to exercise wheels for 6 weeks. Mean distance run per hour (nâ=â4 animals per group). (e) Injection of antibody or leptin into sedentary mice. Circulating leukocytes levels at Zeitgeber time 7 (*pâ=â0.010 IgG versus αLep, **pâ=â0.0072 αLep versus leptin) and LSK proliferation 22âh after intraperitoneal injection (**pâ=â0.0038 IgG versus αLep, ***pâ=â1.52âÃâ10â5, nâ=â6 animals for IgG, nâ=â7 for α-Lep, nâ=â4 for Leptin, 2 independent experiments, one-way analysis of variance with Sidakâs post hoc test). Data are meanâ±âs.e.m. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 6 Leptin receptor expression in the bone marrow.
(a) Representative flow cytometry dot plots of leptin receptor (LepR) expression in B cells, myeloid cells, T cells, (b) bone marrow long-term hematopoietic stem cells (LT-HSC), short-term HSC (ST-HSC), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocyte erythroid progenitors (MEP), granulocyte macrophage progenitors (GMP) and (c) stromal bone marrow cells (nâ=â3 independent experiments with similar results). (d) Bone marrow unit assay (CFU) for complete colonies (nâ=â4 donor animals). Bone marrow mononuclear cells (BMNCs) were plated with increasing concentrations of leptin. (e) Experimental outline for bone marrow transplantation; data shown in panel f-i. Total bone marrow was isolated from db/db donor mice and transplanted into wild type recipients. After an 8-week recovery period, mice exercised for 6 weeks or remained sedentary. (f) Leptin levels in serum by ELISA (**pâ=â0.0059, nâ=â11 animals for sedentary, nâ=â10 for exercise, 2 independent experiments, two-tailed Studentâs t-test). (g) Circulating leukocyte levels at Zeitgeber time 7 (**pâ=â0.0042, nâ=â11 for animals sedentary, nâ=â10 for exercise, 2 independent experiments, two-tailed Studentâs t-test). (h) BrdU incorporation into LSK 22âh after intraperitoneal injection (*pâ=â0.045, nâ=â10 animals sedentary, nâ=â9 for exercise, 2 independent experiments, two-tailed Studentâs t-test). (i) Gene expression by qPCR in total bone marrow of Cxcl12 (*pâ=â0.042), Vcam1 (*pâ=â0.03), Kitl (*pâ=â0.014) and Angpt1 (* pâ=â0.0168, nâ=â11 animals for sedentary, nâ=â10 for exercise, 2 independent experiments, two-tailed U test for Cxcl12 and two-tailed Studentâs t-test for Vcam1, Kitl, Angpt1). mRNA levels were normalized to Actb Ct values. (j) Leptin levels in blood of Leprfl/f and Prrx1-creERT2:Leprfl/fl mice measured by ELISA (nâ=â8 animals for Leprfl/fl and nâ=â11 for Prrx1-creERT2:Leprfl/fl). (k) Representative microCT images of the proximal metaphysis and mid-diaphysis tibia of Prrx1-creERT2:Leprfl/fl mice and their Leprfl/fl littermates. (b) Parameters of bone microstructure, including trabecular and cortical thickness, bone mineral density and polar moment of inertia by µCT (nâ=â3 animals per group). Data are meanâ±âs.e.m. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 7 Exercise effects wane after 6 sedentary weeks.
(a) Experimental outline for b-c. (b) Blood (*pâ=â0.012, ***pâ=â8.89âÃâ10â5) and tibial (**pâ=â0.0053, ***pâ=â0.00079) leptin concentrations measured by ELISA (nâ=â9 animals for sedentary and exercise, nâ=â13 animals for post-exercise-sedentary, 3 independent experiments, with Dunnâs post hoc test). (c) Gene expression of niche factors Cxcl12 (*pâ=â0.015), Vcam1 (*pâ=â0.038), Kitl (**pâ=â0.0037 sedentary versus exercise, **pâ=â0.0035 exercise versus post-exercise-sedentary) and Angpt1 (*pâ=â0.027) in whole bone marrow by qPCR (nâ=â9 animals for sedentary and exercise, nâ=â13 animals for post-exercise-sedentary, 3 independent experiments, one-way analysis of variance with Sidakâs post hoc test). mRNA levels were normalized to Actb Ct values. (d) Experimental outline for e. The post-exercise-sedentary group had access to exercise wheels for 6 weeks after which the wheels were removed for the following 6 weeks. Sedentary controls had no access, while the exercise group had access to wheels during the last 6 weeks before sacrifice. (e) Circulating leukocyte levels at Zeitgeber time 7 (*pâ=â0.028 sedentary versus exercise, *pâ=â0.045 exercise versus post-exercise sedentary) and BrdU incorporation into LSK 22âh after intraperitoneal injection (*pâ=â0.045 sedentary versus exercise, *pâ=â0.014 exercise versus post-exercise-sedentary, nâ=â6 animals per group, with Dunnâs post hoc test). (f) Outline of the competitive bone marrow transplantation experiments. LSK were isolated from CD45.2 donors that either exercised for 6 weeks or were sedentary. These were transplanted in a 1:1 ratio into CD45.1 recipients together with LSK isolated from Ubc-GFP mice that exercised for 6 weeks and had a 3-week post-exercise-sedentary period. Blood chimerism 8 weeks after transplantation (nâ=â4 animals per group, pâ=â0.12 for exercise versus post-exercise-sedentary donor chimerism, Wilcoxon matched-pairs signed rank test). Data are meanâ±âs.e.m. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 8 Background ATAC-seq signals are similar, while peaks are higher in LSK of sedentary mice.
(a) Average profiles of ATAC-seq tag density among randomly shuffled regions of the same size as the actual ATAC-seq peaks. These profiles are similar among different conditions, suggesting the absence of background shift between ATAC-seq signals. (b) Tracks of normalized ATAC-seq tag density for the loci of additional genes in the top ten significant genes in the cell cycle category as determined by DAVID in Fig. 3n. (c) Scatter plot of normalized tag density at ATAC-seq peaks shows comparison between LSK from sedentary versus post-exercise-sedentary cohorts. Peaks with significantly lower and higher tag density in post-running mice are highlighted in orange and black, respectively (FDRâ<â0.01). The top ten significant genes in the cell cycle pathway determined by DAVID (refer to d) and Mki67 are indicated; see Supplementary Table 1 for all genes. (d) Functional categories enriched among genes with differential chromatin accessibility in LSK from sedentary versus post-exercise-sedentary mice as determined by DAVID. (e) Tracks of normalized ATAC-seq tag density for the loci of the top ten significant genes in the cell cycle category as determined by DAVID in d.
Extended Data Fig. 9 Leptin in acute MI.
(a) Experimental outline for b-e. (b) Leptin blood levels on day 6 after MI (nâ=â5 animals for Sed-Saline and Ex-Saline, nâ=â6 for Ex-Leptin, 3 independent experiments). (c) Infarct CD45+ leukocyte levels on day 6 after MI (*pâ=â0.025, nâ=â5 animals for Sed-Saline and Ex-Saline, nâ=â6 for Ex-Leptin, 3 independent experiments, with Dunnâs post hoc test). (d) Flow cytometry gating and quantification of neutrophils (*pâ=â0.039 Sed-Saline versus Ex-Leptin, *pâ=â0.021 Ex-Saline versus Ex-Leptin), monocytes (*pâ=â0.018 Sed-Saline versus Ex-Leptin, *pâ=â0.015 Ex-Saline versus Ex-Leptin), macrophages and lymphocytes in the infarct in respective cohorts (nâ=â5 animals for Sed-Saline and Ex-Saline, nâ=â6 for Ex-Leptin, 3 independent experiments, with Dunnâs post hoc test). (e) Cardiac magnetic resonance imaging on day 21 after MI. Ejection fraction (EF), enddiastolic volume (EDV), endsystolic volume (ESV) and left ventricular (LV) mass were determined (nâ=â7 animals for Sed-Saline, nâ=â5 for Ex-Saline, nâ=â8 for Ex-Leptin, 3 independent experiments). (f) Experimental outline for panels g-j. (g) Circulating leukocytes at Zeitgeber 7 (**pâ=â0.0017, nâ=â8 animals for IgG and nâ=â10 for αLep, 3 independent experiments, two-tailed Studentâs). (h) BrdU incorporation into granulocyte macrophage progenitors (GMP) 3 days after MI (pâ=â0.05, nâ=â8 animals for IgG and nâ=â10 for αLep, 3 independent experiments, two-tailed Studentâs t-test). (i) Bone marrow unit assay (CFU) of bone marrow mononuclear cells (BMNCs) for complete colonies (***pâ=â0.00041, nâ=â7 animals for IgG and nâ=â10 for αLep, 3 independent experiments, two-tailed U test). (j) Neutrophils and monocytes per mg infarct tissue (*pâ=â0.03, nâ=â5 animals for IgG, nâ=â6 for αLep, two-tailed U test). (k) Experimental outline for l. (l) Representative immunohistochemical stainings and quantification of myeloid cells (CD11b), collagen deposition (Collagen I), and myofibroblasts (alpha smooth muscle actin) in the infarct border zone (*pâ=â0.026 for CD11b and Collagen I, nâ=â6 animals per group, two-tailed U test). Data are meanâ±âs.e.m. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Extended Data Fig. 10 Stromal leptin receptor deletion attenuates atherosclerosis, inflammation and hematopoiesis.
(a) Experimental outline for b-h. Leprfl/fl mice and Prrx1-creERT2:Leprfl/fl littermates were injected with tamoxifen and received a single IV injection of AAV-PCSK9 followed by a high fat diet for 12 weeks. (b) Representative cross sections of aortic roots stained with Oil red O and assessment of lesion size (*pâ=â0.042, nâ=â8 animals per group, two-tailed Studentâs t-test). (c) Flow cytometry enumeration of myeloid cells in aortas of Leprfl/fl and Prrx1-creERT2:Leprfl/fl mice (*pâ=â0.023, nâ=â8 animals per group, two-tailed Studentâs t-test). (d) CD68 histological staining of aortic root lesions. Percentage of positive staining per plaque (*pâ=â0.029, nâ=â6 animals for Leprfl/fl, nâ=â8 for Prrx1-creERT2:Leprfl/fl, two-tailed U test). (e) Representative flow plots and statistical analysis of long-term hematopoietic stem cells (LT-HSC) in femur bone marrow (*pâ=â0.046, nâ=â9 animals per group, two-tailed Studentâs t-test). (f) Bone marrow unit assay for complete colonies (CFU-C) of bone marrow mononuclear cells (BMNCs) (*pâ=â0.036, nâ=â9 animals per group, two-tailed Studentâs t-test). (g) BrdU incorporation assay 22âhours after intraperitoneal injection for LT-HSC and progenitors (GMP) proliferation (*pâ=â0.027 for LT-HSC, *pâ=â0.017 for GMP, nâ=â9 animals per group, two-tailed Studentâs t-test). (h) Circulating myeloid cells at Zeitgeber time 7 (*pâ=â0.014 for neutrophils, *pâ=â0.046 for monocytes, nâ=â10 animals for Leprfl/fl, nâ=â9 for Prrx1-creERT2:Leprfl/fl, two-tailed Studentâs t-test). Data are meanâ±âs.e.m. (i) Athero-express cohort. The illustrates inclusion criteria for patients and separation into sedentary lifestyle and exercise groups. We acknowledge Servier Medical Art (https://smart.servier.com) for providing images of mice and components of the cartoon.
Supplementary information
Supplementary Tables
Supplementary Tables 1â5
Source data
Source Data Fig. 1
Statistical source information
Source Data Fig. 2
Statistical source information
Source Data Fig. 3
Statistical source information
Source Data Fig. 4
Statistical source information
Source Data Fig. 5
Statistical source information
Source Data Fig. 6
Statistical source information
Rights and permissions
About this article
Cite this article
Frodermann, V., Rohde, D., Courties, G. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat Med 25, 1761â1771 (2019). https://doi.org/10.1038/s41591-019-0633-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41591-019-0633-x
This article is cited by
-
Systemic and local regulation of hematopoietic homeostasis in health and disease
Nature Cardiovascular Research (2024)
-
Early-life exercise induces immunometabolic epigenetic modification enhancing anti-inflammatory immunity in middle-aged male mice
Nature Communications (2024)
-
Exercise ameliorates muscular excessive mitochondrial fission, insulin resistance and inflammation in diabetic rats via irisin/AMPK activation
Scientific Reports (2024)
-
Effects of lifestyle factors on leukocytes in cardiovascular health and disease
Nature Reviews Cardiology (2024)
-
The treatment of chronic anemia in heart failure: a global approach
Clinical Research in Cardiology (2024)