Abstract
Metasurfaces are engineered surfaces that consist of subwavelength periodic elements and can be used to manipulate electromagnetic waves. Multifunctional or reconfigurable electromagnetic meta-devices based on a direct-current biasing system can be built using lumped electronic components. However, such meta-devices require bulky power supplies, field-programmable gate arrays, electrical wires and complex control circuits. Here, we report a digital metasurface platform that can be programmed optically to implement electromagnetic functions. Our digital platform has 6âÃâ6 subarrays, each of which contains 4âÃâ4 metasurface elements based on electronic varactors integrated with an optical interrogation network based on photodiodes. The interrogation network can convert visible light illumination patterns to voltages and applies bias to the metasurface elements, generating specific microwave reflection phase distributions. To illustrate the capabilities of our approach, we use the optically driven digital metasurface for external cloaking, illusion and dynamic vortex beam generation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333â337 (2011).
Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139â150 (2014).
Arbabi, A., Arbabi, E., Horie, Y., Kamali, S. M. & Faraon, A. Planar metasurface retroreflector. Nat. Photon. 11, 415â420 (2017).
Diaz-Rubio, A., Asadchy, V. S., Elsakka, A. & Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv. 3, e1602714 (2017).
Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 3, e218 (2014).
Chen, S., Li, Z., Zhang, Y., Cheng, H. & Tian, J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Adv. Opt. Mater. 8, 1800104 (2018).
Cui, T. J. Microwave metamaterials. Natl Sci. Rev. 5, 134â136 (2018).
Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310â1314 (2015).
Maguid, E. et al. Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202â1206 (2016).
Zhang, X. G., Jiang, W. X., Tian, H. W. & Cui, T. J. Controlling radiation beams by low-profile planar antenna arrays with coding elements. ACS Omega 3, 10601â10611 (2018).
Luo, X. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015).
Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60â65 (2016).
Yan, L. et al. 0.2λ 0 thick adaptive retroreflector made of spin-locked metasurface. Adv. Mater. 30, 1802721 (2018).
Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).
Yang, H. et al. A 1-bit 10âÃâ10 reconfigurable reflectarray antenna: design, optimization and experiment. IEEE Trans. Antennas Propag. 64, 2246â2254 (2016).
Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1028 (2019).
Chen, K. et al. A reconfigurable active Huygensâ metalens. Adv. Mater. 29, 1606422 (2017).
Cui, T. J., Liu, S., Bai, G. D. & Ma, Q. Direct transmission of digital message via programmable coding metasurface. Research 2019, 2584509 (2019).
Huang, C. et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater. 5, 1700485 (2017).
Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).
Oliveri, G., Werner, D. H. & Massa, A. Reconfigurable electromagnetics through metamaterialsâa review. Proc. IEEE 103, 1034â1056 (2015).
Zhang, M. et al. Plasmonic metasurfaces for switchable photonic spinâorbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018).
Nemati, A., Wang, Q., Hong, M. & Teng, J. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv 1, 18000901 (2018).
Shadrivov, I. V., Kapitanova, P. V., Maslovski, S. I. & Kivshar, Y. S. Metamaterials controlled with light. Phys. Rev. Lett. 109, 083902 (2012).
Zhang, X. G., Jiang, W. X. & Cui, T. J. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Appl. Phys. Lett. 113, 091601 (2018).
Zhang, X. G. et al. Light-controllable digital coding metasurfaces. Adv. Sci. 5, 1801028 (2018).
Gorlach, M. A., Dobrykh, D. A., Slobozhanyuk, A. P., Belov, P. A. & Lapine, M. Nonlinear symmetry breaking in photometamaterials. Phys. Rev. B 97, 115119 (2018).
Vaccaro, S., Mosig, J. R. & Maagt, P. D. Two advanced solar antenna âSOLANTâ designs for satellite and terrestrial communications. IEEE Trans. Antennas Propag. 51, 2028â2034 (2003).
Tanaka, M., Suzuki, Y., Araki, K. & Suzuki, R. Microstrip antenna with solar cells for microsatellites. Electron. Lett. 31, 263â366 (1996).
Hashemi, M. R. M. et al. A flexible phased array system with low areal mass density. Nat. Electron. 2, 195â205 (2019).
An, W., Xu, S., Yang, F. & Gao, J. A Ka-band reflectarray antenna integrated with solar cells. IEEE Trans. Antennas Propag. 62, 5539â5546 (2014).
Salamin, Y. et al. Microwave plasmonic mixer in a transparent fibre-wireless link. Nat. Photon. 12, 749â753 (2018).
Piccardo, M. et al. Radio frequency transmitter based on a laser frequency comb. Proc. Natl Acad. Sci. USA 116, 9181â9185 (2019).
Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronicâphotonic systems. Nat. Electron. 1, 622â635 (2018).
MA46H120 Series Datasheet (MACOM, 2018); https://cdn.macom.com/datasheets/MA46H120%20Series.pdf
BPW 34S Datasheet (OSRAM, 2020); https://www.osram.com/os/ecat/DIL%20SMT%20BPW%2034%20S/com/en/class_pim_web_catalog_103489/global/prd_pim_device_2219543/
Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162â169 (2018).
Hougne, P. D., Fink, M. & Lerosey, G. Optimally diverse communication channels in disordered environments with tuned randomness. Nat. Electron. 1, 36â41 (2019).
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202 and 2017YFA0700203), the National Natural Science Foundation of China (61631007, 61571117, 61731010, 61735010, 61722106, 61701107 and 61701108), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0081), the Scientific Research Foundation of Graduate School of Southeast University (YBPY1938), the Foundation of National Excellent Doctoral Dissertation of China (201444) and the 111 Project (111-2-05).
Author information
Authors and Affiliations
Contributions
X.G.Z., W.X.J., C.-W.Q. and T.J.C. conceived the idea of the optically interrogated digital platform. X.G.Z., H.L.J., Q.W., L.B. and Y.L. conducted the theoretical analysis. X.G.Z., H.W.T., L.B. and Z.J.L. conducted the simulations and performed the fabrication and measurements. X.G.Z., W.X.J., S.S., C.-W.Q. and T.J.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1â9, Table 1, and Notes 1â5.
Rights and permissions
About this article
Cite this article
Zhang, X.G., Jiang, W.X., Jiang, H.L. et al. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron 3, 165â171 (2020). https://doi.org/10.1038/s41928-020-0380-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-020-0380-5
This article is cited by
-
Continuous manipulation of electromagnetic radiation based on ultrathin flexible frequency coding metasurface
Scientific Reports (2024)
-
Vision-driven metasurfaces for perception enhancement
Nature Communications (2024)
-
Super-resolution diffractive neural network for all-optical direction of arrival estimation beyond diffraction limits
Light: Science & Applications (2024)
-
Intelligent wireless power transfer via a 2-bit compact reconfigurable transmissive-metasurface-based router
Nature Communications (2024)
-
Review for wireless communication system based on spaceâtime-coding digital metasurfaces
Applied Physics B (2024)