Abstract
Potential applications in photonics and optoelectronics are based on our understanding of the lightâmatter interaction on an atomic monolayer scale. Atomically thin 2D transition metal dichalcogenides, such as MoS2 and WSe2, are model systems for layered semiconductors with a bandgap in the visible region of the optical spectrum. They can be assembled to form heterostructures and combine the unique properties of the constituent monolayers. In this Technical Review, we provide an introduction to optical spectroscopy for layered materials as a powerful, non-invasive tool to access details of the electronic band structure and crystal quality. We discuss the physical origin of the main absorption and emission features in the optical spectra and how they can be tuned. We explain key aspects of practical set-ups for performing experiments in different conditions and the important influence of the direct sample environment, such as substrates and encapsulation layers, on the emission and absorption mechanisms. A survey of optical techniques that probe the coupling between layers and analyse carrier polarization dynamics for spin- and valleytronics is provided.
Key points
-
Optical spectroscopy tools give access to details of the electronic band structure, crystal quality, crystal orientation, lightâmatter interaction and spinâvalley polarization of 2D materials.
-
Key experimental parameters such as temperature, applied electric and magnetic fields, optical excitation power and the direct sample environment (such as substrate and encapsulation layers) strongly influence optical absorption and emission.
-
To achieve high spatial resolution, experiments on layered materials are carried out in optical microscopes. The high numerical aperture of the microscope objectives results in excitation and collection of light away from normal incidence, which gives access to information on optical transitions with different spatial orientations of the optical dipole.
-
In layered materials with strong excitonic effects, lightâmatter interaction is enhanced at specific energies. The emission as well as the absorption is therefore strongly energy-dependent, and light sources with tunable excitation provide flexibility for controlling optical absorption in the sample.
-
Using optical excitations with well-defined light polarization enables the excitation of carriers with specific spin and/or valley quantum numbers determined by the optical selection rules in the crystal. This reveals important information on the spin and valley dynamics in the material.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ubrig, N. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 19, 299â304 (2020).
Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246â252 (2018).
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/ WSe2 heterobilayers. Nature 567, 66â70 (2019).
Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472â477 (2020).
Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497â501 (2019).
Ubrig, N. et al. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater. 7, 015007 (2019).
Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646â661 (2019).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Ciorciaro, L., Kroner, M., Watanabe, K., Taniguchi, T. & Imamoglu, A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys. Rev. Lett. 124, 197401 (2020).
Lyons, T. P. et al. Interplay between spin proximity effect and charge-dependent exciton dynamics in MoSe2/CrBr3 van der Waals heterostructures. Nat. Commun. 11, 6021 (2020).
Sortino, L. et al. Enhanced lightâmatter interaction in an atomically thin semiconductor coupled with dielectric nano-antennas. Nat. Commun. 10, 5119 (2019).
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80â84 (2019).
Zhang, C. et al. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).
Sushko, A. et al. High resolution imaging of reconstructed domains and moiré patterns in functional van der Waals heterostructure devices. Preprint at https://arxiv.org/abs/1912.07446 (2019).
Andersen, T. I. et al. Moiré excitons correlated with superlattice structure in twisted WSe2/WSe2 homobilayers. Preprint at https://arxiv.org/abs/1912.06955 (2019).
Shree, S. et al. High optical quality of MoS2 monolayers grown by chemical vapor deposition. 2D Mater. 7, 015011 (2019).
Holler, J. et al. Low-frequency Raman scattering in WSe2âMoSe2 heterobilayers: evidence for atomic reconstruction. Appl. Phys. Lett. 117, 013104 (2020). A study that shows evidence of atomic reconstruction and stacking order in heterobilayers by means of low-frequency Raman spectroscopy.
Zhao, Y., Ippolito, S. & Samorì, P. Functionalization of 2D materials with photosensitive molecules: from light-responsive hybrid systems to multifunctional devices. Adv. Opt. Mater. 7, 1900286 (2019).
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216â226 (2016).
Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830â834 (2015).
Hsu, W.-T. et al. Optically initialized robust valley-polarized holes in monolayer WSe2. Nat. Commun. 6, 8963 (2015).
Dey, P. et al. Gate-controlled spinâvalley locking of resident carriers in WSe2 monolayers. Phys. Rev. Lett. 119, 137401 (2017).
Branny, A., Kumar, S., Proux, R. & Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
Palacios-Berraquero, C. et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).
Horng, J. et al. Perfect absorption by an atomically thin crystal. Phys. Rev. Appl. 14, 024009 (2020).
Scuri, G. et al. Large excitonic reflectivity of monolayer MoSe2 encapsulated in hexagonal boron nitride. Phys. Rev. Lett. 120, 037402 (2018).
Back, P., Zeytinoglu, S., Ijaz, A., Kroner, M. & ImamoÄlu, A. Realization of an electrically tunable narrow-bandwidth atomically thin mirror using monolayer MoSe2. Phys. Rev. Lett. 120, 037401 (2018).
Epstein, I. et al. Near-unity light absorption in a monolayer WS2 van der Waals heterostructure cavity. Nano Lett. 20, 3545â3552 (2020).
Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549â553 (2018).
Frindt, R. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37, 1928â1929 (1966).
Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466â1471 (1923).
Wilson, J. A. & Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193â335 (1969).
Van Baren, J. et al. Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Mater. 6, 025022 (2019).
Frondel, J. W. & Wickman, F. E. Molybdenite polytypes in theory and occurrence. ii. some naturally-occurring polytypes of molybdenite. Am. Mineral. 55, 1857â1875 (1970).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spinâorbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).
Dyakonov, M. I. Spin Physics in Semiconductors, Vol. 1 (Springer, 2017).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271â1275 (2010).
Tonndorf, P. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908â4916 (2013).
Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).
Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).
Kormányos, A. et al. kââ âp theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 022001 (2015).
He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).
Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091â1095 (2014).
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).
Song, Y. & Dery, H. Transport theory of monolayer transition-metal dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).
Rytova, N. S. Screened potential of a point charge in a thin film. Preprint at https://arxiv.org/abs/1806.00976 (2018).
Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films. Sov. J. Exp. Theor. Phys. Lett. 29, 658 (1979).
Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).
Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).
Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541 (2019).
Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).
Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856â860 (2017).
Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 3913 (2019).
Wang, G. et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys. Rev. Lett. 119, 047401 (2017).
Robert, C. et al. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017).
Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).
Pöllmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889â893 (2015).
Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035â1041 (2018).
Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metalâsemiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).
Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2âWSe2 heterostructures. Nat. Commun. 6, 6242 (2015).
van Der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869â3875 (2014).
Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592â597 (2020).
Sung, J. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 15, 750â754 (2020).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359â363 (2020).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76â80 (2019).
Dau, M. T. et al. Beyond van der Waals interaction: the case of MoSe2 epitaxially grown on few-layer graphene. ACS Nano 12, 2319â2331 (2018).
Pacuski, W. Narrow excitonic lines and large-scale homogeneity of transition metal dichalcogenide monolayer grown by MBE on hBN. Nano Lett. 20, 3058â3066 (2020).
Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065â1068 (2015).
Lee, Y.-H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320â2325 (2012).
Kobayashi, Y. et al. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9, 4056â4063 (2015).
Rhyee, J.-S. et al. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 28, 2316â2321 (2016).
George, A. et al. Controlled growth of transition metal dichalcogenide monolayers using Knudsen-type effusion cells for the precursors. J. Phys. Mater. 2, 016001 (2019).
Sahoo, P. K., Memaran, S., Xin, Y., Balicas, L. & Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553, 63â67 (2018).
Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368â374 (2020).
Jia, H. et al. Large-scale arrays of single-and few-layer MoS2 nanomechanical resonators. Nanoscale 8, 10677â10685 (2016).
Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).
Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2âMoS2 lateral pn junction with an atomically sharp interface. Science 349, 524â528 (2015).
Hsu, W.-T. et al. Evidence of indirect gap in monolayer WSe2. Nat. Commun. 8, 929 (2017).
Hsu, W.-T. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).
Hsu, W.-T. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 5, eaax7407 (2019).
Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832â837 (2019).
Lien, D.-H. et al. Engineering light outcoupling in 2D materials. Nano Lett. 15, 1356â1361 (2015).
Robert, C. et al. Optical spectroscopy of excited exciton states MoS2 monolayers in van der Waals heterostructures. Phys. Rev. Mater. 2, 011001 (2018).
Fang, H. et al. Control of the exciton radiative lifetime in van der Waals heterostructures. Phys. Rev. Lett. 123, 067401 (2019).
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
Purdie, D. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).
Wang, Z., Zhao, L., Mak, K. F. & Shan, J. Probing the spin-polarized electronic band structure in monolayer transition metal dichalcogenides by optical spectroscopy. Nano Lett. 17, 740â746 (2017).
Zhou, Y. et al. Controlling excitons in an atomically thin membrane with a mirror. Phys. Rev. Lett. 124, 027401 (2020).
Courtade, E. et al. Charged excitons in monolayer WSe2: experiment and theory. Phys. Rev. B 96, 085302 (2017).
Bermudez, V. M. & McClure, D. S. Spectroscopic studies of the two-dimensional magnetic insulators chromium trichloride and chromium tribromide-I. J. Phys. Chem. Solids 40, 129â147 (1979).
Molina-Sánchez, A., Catarina, G., Sangalli, D. & Fernández-Rossier, J. Magneto-optical response of chromium trihalide monolayers: chemical trends. J. Mater. Chem. C 8, 8856â8863 (2020).
Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).
Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523â4530 (2015).
Ansari, L. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400â°C. npj 2D Mater. Appl. 3, 33 (2019).
Cassabois, G., Valvin, P. & Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10, 262â266 (2016).
Kharche, N. & Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274â5278 (2011).
Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer grapheneâBN heterostructures. Nano Lett. 11, 1070â1075 (2011).
Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett. 16, 42â44 (1991).
Alfano, R. R. The Supercontinuum Laser Source: The Ultimate White Light (Springer, 2016).
Arora, A. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 8, 639 (2017).
Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901â907 (2020).
Zhang, X.-X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883â888 (2017).
Wang, G. et al. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 117, 187401 (2016).
Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).
Klingshirn, C. F. Semiconductor Optics (Springer, 2012).
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).
Ho, C., Huang, Y., Tiong, K. & Liao, P. Absorption-edge anisotropy in ReS2 and ReSe2 layered semiconductors. Phys. Rev. B 58, 16130 (1998).
Zhang, E. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10, 8067â8077 (2016).
Horng, J. et al. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 97, 241404 (2018).
Arora, A. et al. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides. Nanoscale 10, 15571â15577 (2018).
Gerber, I. C. et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 99, 035443 (2019).
Slobodeniuk, A. et al. Fine structure of K-excitons in multilayers of transition metal dichalcogenides. 2D Mater. 6, 025026 (2019).
Lorchat, E. et al. Dipolar and magnetic properties of strongly absorbing hybrid interlayer excitons in pristine bilayer MoS2. Preprint at https://arxiv.org/abs/2004.12753 (2020).
Pelant, I. & Valenta, J. Luminescence Spectroscopy of Semiconductors (Oxford Univ. Press, 2012).
Haunschild, J. et al. Quality control of as-cut multicrystalline silicon wafers using photoluminescence imaging for solar cell production. Solar Energy Mater. Solar Cells 94, 2007â2012 (2010).
Balocchi, A., Amand, T. & Marie, X. in Semiconductor Research (eds Patane, A. & Balkan, N.) 223â258 (Springer, 2012).
Jakubczyk, T. et al. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett. 16, 5333â5339 (2016).
Hao, K. et al. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett. 16, 5109â5113 (2016).
Robert, C. et al. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017).
Shree, S. et al. Observation of exciton-phonon coupling in MoSe2 monolayers. Phys. Rev. B 98, 035302 (2018).
Nagler, P. et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2. Phys. Rev. Lett. 121, 057402 (2018).
Sun, D. et al. Observation of rapid excitonâexciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625â5629 (2014).
Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).
Paradisanos, I. et al. Room temperature observation of biexcitons in exfoliated WS2 monolayers. Appl. Phys. Lett. 110, 193102 (2017).
Sigl, L. et al. Condensation signatures of photogenerated interlayer excitons in a van der Waals heterostack. Preprint at https://arxiv.org/abs/2001.07567 (2020).
Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525â529 (2007).
Zhu, C. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013).
Berger, S. et al. Optical properties of carbon nanotubes in a composite material: the role of dielectric screening and thermal expansion. J. Appl. Phys. 105, 094323 (2009).
Hirana, Y., Tanaka, Y., Niidome, Y. & Nakashima, N. Strong micro-dielectric environment effect on the band gaps of (n,âm) single-walled carbon nanotubes. J. Am. Chem. Soc. 132, 13072â13077 (2010).
Ai, N., Walden-Newman, W., Song, Q., Kalliakos, S. & Strauf, S. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes. ACS Nano 5, 2664â2670 (2011).
Noe, J. C. et al. Environmental electrometry with luminescent carbon nanotubes. Nano Lett. 18, 4136â4140 (2018).
Raynaud, C. et al. Superlocalization of excitons in carbon nanotubes at cryogenic temperature. Nano Lett. 19, 7210â7216 (2019).
Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 1â10 (2018).
Zhang, H. et al. Interference effect on optical signals of monolayer MoS2. Appl. Phys. Lett. 107, 101904 (2015).
Roddaro, S., Pingue, P., Piazza, V., Pellegrini, V. & Beltram, F. The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7, 2707â2710 (2007).
Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2. Phys. Rev. Lett. 112, 047401 (2014).
Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).
Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223 (2017).
Liu, E. et al. Multipath optical recombination of intervalley dark excitons and trions in monolayer WSe2. Phys. Rev. Lett. 124, 196802 (2020).
Luo, Y. et al. Exciton dipole orientation of strain-induced quantum emitters in WSe2. Nano Lett. 20, 5119â5126 (2020).
Lu, Z. et al. Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe2. 2D Mater. 7, 015017 (2019).
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004â1015 (2018).
Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870â875 (2019).
Mupparapu, R., Bucher, T. & Staude, I. Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. Adv. Phys. X 5, 1734083 (2020).
Vasista, A. B., Sharma, D. K. & Kumar, G. P. Fourier plane optical microscopy and spectroscopy. Digital Encyclopedia of Applied Physics https://doi.org/10.1002/3527600434.eap817 (2003).
Vasista, A. B. et al. Differential wavevector distribution of surface-enhanced Raman scattering and fluorescence in a film-coupled plasmonic nanowire cavity. Nano Lett. 18, 650â655 (2018).
Gu, J., Chakraborty, B., Khatoniar, M. & Menon, V. M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 14, 1024â1028 (2019).
Wagner, R., Heerklotz, L., Kortenbruck, N. & Cichos, F. Back focal plane imaging spectroscopy of photonic crystals. Appl. Phys. Lett. 101, 081904 (2012).
Graf, A., Tropf, L., Zakharko, Y., Zaumseil, J. & Gather, M. C. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nat. Commun. 7, 13078 (2016).
Yoshikawa, K., Matsuda, K. & Kanemitsu, Y. Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114, 4353â4356 (2010).
Cadiz, F. et al. Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure. Appl. Phys. Lett. 112, 152106 (2018).
Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).
Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688â691 (2016).
Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104â1109 (2019).
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. nanotechnol. 9, 682â686 (2014).
Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131â136 (2019).
Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992â2997 (2015).
Srivastava, A. & ImamoÄlu, A. Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).
Glazov, M. et al. Intrinsic exciton-state mixing and nonlinear optical properties in transition metal dichalcogenide monolayers. Phys. Rev. B 95, 035311 (2017).
Berghäuser, G., Knorr, A. & Malic, E. Optical fingerprint of dark 2p-states in transition metal dichalcogenides. 2D Mater. 4, 015029 (2016).
Wang, G. et al. Exciton states in monolayer MoSe2: impact on interband transitions. 2D Mater. 2, 045005 (2015).
Chow, C. M. et al. Phonon-assisted oscillatory exciton dynamics in monolayer MoSe2. npj 2D Mater. Appl. 1, 33 (2017).
Soubelet, P. et al. Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B 93, 155407 (2016).
Kioseoglou, G. et al. Valley polarization and intervalley scattering in monolayer MoS2. Appl. Phys. Lett. 101, 221907 (2012).
Tornatzky, H., Kaulitz, A.-M. & Maultzsch, J. Resonance profiles of valley polarization in single-layer MoS2 and MoSe2. Phys. Rev. Lett. 121, 167401 (2018).
Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 11, 497â501 (2017).
Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).
Paradisanos, I. et al. Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition. Appl. Phys. Lett. 116, 203102 (2020).
Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550â4558 (2020).
Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).
Molas, M. et al. Probing and manipulating valley coherence of dark excitons in monolayer WSe2. Phys. Rev. Lett. 123, 096803 (2019).
Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141â147 (2015).
Nagler, P. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 8, 1551 (2017).
Back, P. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Phys. Rev. Lett. 118, 237404 (2017).
Carvalho, B. R., Malard, L. M., Alves, J. M., Fantini, C. & Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).
Scheuschner, N., Gillen, R., Staiger, M. & Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 91, 235409 (2015).
Oliver, S. M. et al. The structural phases and vibrational properties of Mo1âxWxTe2 alloys. 2D Mater. 4, 045008 (2017).
Wolverson, D., Crampin, S., Kazemi, A. S., Ilie, A. & Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8, 11154â11164 (2014).
Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012).
Bertolazzi, S. et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 29, 1606760 (2017).
Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626â3630 (2013).
Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).
Buscema, M., Steele, G. A., van der Zant, H. S. & Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 561â571 (2014).
Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695â2700 (2010).
Zhang, X. et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87, 115413 (2013).
Debnath, R. et al. Evolution of high-frequency Raman modes and their doping dependence in twisted bilayer MoS2. Nanoscale 12, 17272â17280 (2020).
Hsu, W.-T. et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951â2958 (2014).
Shinde, S. M. et al. Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2. NPG Asia Mater. 10, e468 (2018).
Psilodimitrakopoulos, S. et al. Twist angle mapping in layered WS2 by polarization-resolved second harmonic generation. Sci. Rep. 9, 14285â11 (2019).
Psilodimitrakopoulos, S. et al. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light Sci. Appl. 7, 18005 (2018).
Mennel, L., Paur, M. & Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics 4, 034404 (2019).
Farenbruch, A. et al. Magneto-Stark and Zeeman effect as origin of second harmonic generation of excitons in Cu2O. Phys. Rev. B 101, 115201 (2020).
Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407â411 (2015).
Kaminski, B. et al. Spin-induced optical second harmonic generation in the centrosymmetric magnetic semiconductors EuTe and EuSe. Phys. Rev. Lett. 103, 057203 (2009).
Sun, Z. et al. Topographic and electronic contrast of the graphene moiré on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy. Phys. Rev. B 83, 081415 (2011).
de la Torre, B. et al. Atomic-scale variations of the mechanical response of 2D materials detected by noncontact atomic force microscopy. Phys. Rev. Lett. 116, 245502 (2016).
Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854â860 (2020).
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).
Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494â498 (2012).
Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).
Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490â493 (2012).
Unuchek, D. SpinâValley Optoelectronics Based on Two-dimensional Materials. Thesis, EPFL (2019).
Hecht, E. et al. Optics Vol. 4 (Addison Wesley, 2002).
Pawley, J. Handbook of Biological Confocal Microscopy Vol. 236 (Springer, 2006).
Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).
Benelajla, M., Kammann, E., Urbaszek, B. & Karrai, K. The physical origins of extreme cross-polarization extinction in confocal microscopy. Preprint at https://arxiv.org/abs/2004.13564 (2020).
Acknowledgements
The authors acknowledge funding from ANR 2D-vdW-Spin, ANR VallEx, ANR MagicValley, ITN 4PHOTON Marie Sklodowska Curie Grant Agreement no. 721394 and the Institut Universitaire de France. The authors thank H. Tornatzky, D. Lagarde, A. Balocchi, N. Leisgang, H. Park and M. Glazov for discussions, and Y. Zhou for providing data from Zhou et al. Phys. Rev. Lett. 124, 027401 (2020).
Author information
Authors and Affiliations
Contributions
All authors contributed to the discussion of content and researched data for the article. S.S., I.P. and C.R. wrote the manuscript with critical input from X.M. and B.U.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Multilayers
-
Structures consisting of more than one layer.
- Excitons
-
Coulomb-bound electronâhole pairs.
- Bright and dark optical transitions
-
A spin- and dipole-allowed transition is âbrightâ whereas a spin- and/or dipole-forbidden transition is âdarkâ.
- Heterobilayers
-
Lateral or vertical heterojunctions formed by combining two different monolayers.
- Moiré effects
-
Effects related to the interference pattern produced by the superposition of two slightly different lattice constants and/or twist angles.
- Reconstructions
-
Spontaneous translational or angular rearrangements of atoms within multilayers, aiming for a lattice configuration with the lowest energy.
- M 2 factor
-
Represents the degree of variation of a beam from an ideal Gaussian beam. This factor reflects how well a collimated laser beam can be focused to a small spot, or how well a divergent laser source can be collimated.
- Quasiparticle bandgap
-
Bandgap of free electrons and holes; the exciton resonance energies lie in energy below the quasiparticle bandgap.
- Homobilayers and homotrilayers
-
Stacking of two and three monolayers of the same material, respectively.
- Four-wave mixing
-
Nonlinear effect arising from the third-order optical nonlinearity where one or two new wavelengths are produced by interactions between two or three wavelengths. Four-wave-mixing microspectroscopy accesses coherence and population dynamics of excitons.
- Two-colour pumpâprobe experiments
-
Pumpâprobe experiments using two distinct laser beams where the wavelengths of the pump and probe beams are not identical.
Rights and permissions
About this article
Cite this article
Shree, S., Paradisanos, I., Marie, X. et al. Guide to optical spectroscopy of layered semiconductors. Nat Rev Phys 3, 39â54 (2021). https://doi.org/10.1038/s42254-020-00259-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-00259-1
This article is cited by
-
Strain distribution in WS2 monolayers detected through polarization-resolved second harmonic generation
Scientific Reports (2024)
-
Engineering interlayer hybridization in van der Waals bilayers
Nature Reviews Materials (2024)
-
MoS2 quantum dots and their diverse sensing applications
Emergent Materials (2024)
-
Probing the optical near-field interaction of Mie nanoresonators with atomically thin semiconductors
Communications Physics (2023)
-
Excitons dance as light conducts
Nature Physics (2023)