Abstract
The 229Th nucleus has an isomeric state at an energy of about 8âeV above the ground state, several orders of magnitude lower than typical nuclear excitation energies. This has inspired the development of a field of low-energy nuclear physics in which nuclear transition rates are influenced by the electron shell. The low energy makes the 229Th isomer accessible to resonant laser excitation. Observed in laser-cooled trapped thorium ions or with thorium dopant ions in a transparent solid, the nuclear resonance may serve as the reference for an optical clock of very high accuracy. Precision frequency comparisons between such a nuclear clock and conventional atomic clocks will provide sensitivity to the effects of hypothetical new physics beyond the standard model. Although laser excitation of 229Th remains an unsolved challenge, recent experiments have provided essential information on the transition energy and relevant nuclear properties, advancing the field.
Key points
-
A nuclear clock, based on a radiative transition in the nucleus, is less sensitive to external perturbations and therefore potentially more precise than established atomic clocks that are based on transitions in the electron shell.
-
The 229Th nucleus is the prime candidate for the realization of a nuclear clock because it possesses a low-energy (8 eV) excited state that is amenable to resonant laser excitation from the nuclear ground state, with an expected natural linewidth in the millihertz range.
-
Recent experiments have provided essential information on the nuclear properties of 229Th (half-life 7,920âyears), such as the nuclear moments, decay modes of the isomer and a more precise value of the isomer excitation energy, which is required to achieve laser excitation.
-
Thorium-229 is studied as trapped atomic ions in vacuum or doped into transparent crystals such as CaF2. Because the nuclear transition energy is in the range of transitions of valence electrons, the electronic state may influence the nuclear excitation and decay rates.
-
Because of a fine balance of contributions from the strong and electromagnetic interactions to the nuclear transition energy, a 229Th clock would be sensitive to predicted effects of physics beyond the standard model, such as temporal or spatial variations of fundamental constants.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Pauli, W. Zur Frage der theoretischen Deutung der Satelliten einiger Spektrallinien und ihrer Beeinflussung durch magnetische Felder. Naturwissenschaften 12, 741â743 (1924).
Casimir, H. Ãber die hyperfeinstruktur des Europiums. Physica 2, 719â723 (1935).
Rabi, I. I., Zacharias, J. R., Millman, S. & Kusch, P. A new method of measuring nuclear magnetic moment. Phys. Rev. 53, 318 (1938).
Laurence, W. L. Cosmic pendulum for clock planned. New York Times, 34 (21 January 1945).
Ramsey, N. F. History of early atomic clocks. Metrologia 42, 1â3 (2005).
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5âeV transition in Th-229. Europhys. Lett. 61, 181â186 (2003). Proposal of a high-precision optical nuclear clock based on 229Th.
Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012). A detailed theoretical analyis of the achievable accuracy of a 229Th nuclear clock with trapped ions.
Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U. Nucl. Phys. A 259, 29â60 (1976).
Peik, E. & Okhapkin, M. Nuclear clocks based on resonant excitation of γ-transitions. C. R. Phys. 16, 516â523 (2015).
Thirolf, P. G., Seiferle, B. & von der Wense, L. The 229-thorium isomer: doorway to the road from the atomic clock to the nuclear clock. J. Phys. B 52, 203001 (2019).
Matinyan, S. Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199â249 (1998).
Tkalya, E. V. Properties of the optical transition in the 229Th nucleus. Phys. Uspekhi 46, 315â320 (2003).
Pálffy, A. Nuclear effects in atomic transitions. Contemp. Phys. 51, 471 (2010).
von der Wense, L., Seiferle, B. & Thirolf, P. G. Towards a 229Th-based nuclear clock. Meas. Tech. 60, 13â22 (2018).
Peik, E., Zimmermann, K., Okhapkin, M. & Tamm, C. H. R. Prospects for a nuclear optical frequency standard based on thorium-229. In Proc. 7th Symposium on Frequency Standards and Metrology, ISFSM 2008, 532â538 (World Scientific, 2009).
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
Varga, Z., Nicholl, A. & Mayer, K. Determination of the 229Th half-life. Phys. Rev. C 89, 1â6 (2014).
Orth, D. A. SRP thorium processing experience. https://www.osti.gov/biblio/6570656 (2020).
Forsberg, C. W. & Lewis, L. C. Uses for uranium-233: what should be kept for future needs? ORNL 6952, 7 (1999).
Hogle, S. et al. Reactor production of thorium-229. Appl. Radiat. Isot. 114, 19â27 (2016).
Egorov, V. N. Hyperfine structure of the atomic spectrum and the nuclear moments of the thorium-229 isotope. Opt. Spectrosc. 16, 549â554 (1964).
Gulda, K., et al. The nuclear structure of 229Th. Nucl. Phys. A 703, 45â69 (2002).
Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).
Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321 (2018). Laser spectroscopic investigation of properties of the 229Th isomer.
Safronova, M. S., Safronova, U. I., Radnaev, A. G., Campbell, C. J. & Kuzmich, A. Magnetic dipole and electric quadrupole moments of the 229Th nucleus. Phys. Rev. A 88, 060501 (2013).
Minkov, N. & Pálffy, A. Reduced transition probabilities for the gamma decay of the 7.8âeV isomer in 229Th. Phys. Rev. Lett. 118, 212501 (2017).
Seiferle, B., von der Wense, L. & Thirolf, P. G. Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017).
Sakharov, S. L. On the energy of the 3.5-eV level in 229Th. Phys. At. Nucl. 73, 1â8 (2010).
Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007). Precise γ-spectroscopy measurement of the isomer energy.
Verlinde, M. et al. Alternative approach to populate and study the 229Th nuclear clock isomer. Phys. Rev. C 100, 24315 (2019).
Kofoed-Hansen, O. On the theory of the recoil in β-decay. Phys. Rev. 74, 1785â1788 (1948).
Ferrer, R. et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017).
Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990).
Sanner, C. et al. Optical clock comparison for Lorentz symmetry testing. Nature 567, 204â208 (2019).
Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10â18. Phys. Rev. Lett. 123, 033201 (2019).
Kälber, W. et al. Nuclear radii of thorium isotopes from laser spectroscopy of stored ions. Z. Phys. A 334, 103â108 (1989).
Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).
Meier, D.-M. et al. Electronic level structure of Th+ in the range of the 229mTh isomer energy. Phys. Rev. A 99, 52514 (2019).
Groot-Berning, K. et al. Trapping and sympathetic cooling of single thorium ions for spectroscopy. Phys. Rev. A 99, 023420 (2019).
Herrera-Sancho, O. A. et al. Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line. Phys. Rev. A 85, 033402 (2012).
Feiock, F. D. & Johnson, W. R. Atomic susceptibilities and shielding factors. Phys. Rev. 187, 39â50 (1969).
Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749â752 (2005).
v.d. Wense, L., Seiferle, B., Laatiaoui, M. & Thirolf, P. G. Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015).
Haas, R. et al. Development of a recoil ion source providing slow Th ions including 229(m)Th in a broad charge state distribution. Hyperfine Interact. 241, 25 (2020).
Gunter, K., Asaro, F. & Helmholz, A. C. Charge and energy distributions of recoils from Th226 alpha decay. Phys. Rev. Lett. 16, 362â364 (1966).
Zimmermann, K., Okhapkin, M. V., Herrera-Sancho, O. A. & Peik, E. Laser ablation loading of a radiofrequency ion trap. Appl. Phys. B Lasers Opt. 107, 883â889 (2012).
Campbell, C. J. et al. Multiply charged thorium crystals for nuclear laser spectroscopy. Phys. Rev. Lett. 102, 233004 (2009).
Jeet, J. et al. Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015).
Stellmer, S. et al. Attempt to optically excite the nuclear isomer in 229Th. Phys. Rev. A 97, 062506 (2018).
Jackson, R. A., Amaral, J. B., Valerio, M. E. G., Demille, D. P. & Hudson, E. R. Computer modelling of thorium doping in LiCaAlF6 and LiSrAlF6: application to the development of solid state optical frequency devices. J. Phys. Condens. Matter 21, 325403 (2009).
Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).
Pimon, M. et al. DFT calculation of 229thorium-doped magnesium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 32, 255503 (2020).
Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238â242 (2019).
Nickerson, B. S. et al. Nuclear excitation of the 229Th isomer via defect states in doped crystals. Phys. Rev. Lett. 125, 032501 (2020).
Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).
Kazakov, G. A. et al. Performance of a 229thorium solid-state nuclear clock. N. J. Phys. 14, 083019 (2012).
Nickerson, B. S., Liao, W.-T. & Pálffy, A. Collective effects in 229Th-doped crystals. Phys. Rev. A 98, 062520 (2018).
Zhao, X. et al. Observation of the deexcitation of the 229mTh nuclear isomer. Phys. Rev. Lett. 109, 160801 (2012).
Stellmer, S., Schreitl, M., Kazakov, G. A., Sterba, J. H. & Schumm, T. Feasibility study of measuring the 229Th nuclear isomer transition with 233U-doped crystals. Phys. Rev. C 94, 14302 (2016).
Borisyuk, P. V. et al. Excitation of 229Th nuclei in laser plasma: the energy and half-life of the low-lying isomeric state. Preprint at https://arxiv.org/abs/1804.00299 (2018).
Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).
Reich, C. W., Helmer, R. G., Baker, J. D. & Gehrke, R. J. Emission probabilities and energies of of γ-ray transitions from the decay of 233U. Int. J. Appl. Radiat. Isot. 35, 185â188 (1984).
Reich, C. W. & Helmer, R. G. Energy separation of the doublet of intrinsic states at the ground state of 229Th. Phys. Rev. Lett. 64, 271â273 (1990).
Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5âeV. Phys. Rev. C 49, 1845â1858 (1994).
Irwin, G. M. & Kim, K. H. Observation of electromagnetic radiation from deexcitation of the 229Th isomer. Phys. Rev. Lett. 79, 990â993 (1997).
Richardson, D. S., Benton, D. M., Evans, D. E., Griffith, J. A. R. & Tungate, G. Ultraviolet photon emission observed in the search for the decay of the 229Th isomer. Phys. Rev. Lett. 80, 3206â3208 (1998).
Shaw, R. W., Young, J. P., Cooper, S. P. & Webb, O. F. Spontaneous ultraviolet emission from 233uranium/229thorium samples. Phys. Rev. Lett. 82, 1109â1111 (1999).
Utter, S. B. et al. Reexamination of the optical gamma ray decay in 229Th. Phys. Rev. Lett. 82, 505â508 (1999).
Guimarães-Filho, Z. O. & Helene, O. Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C 71, 044303 (2005).
Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-state Doublet in the Nucleus 229Th. Report No. LLNL-PROC-415170 (Lawrence Livermore National Lab, 2009).
Kazakov, G. A., Schumm, T. & Stellmer, S. Re-evaluation of the Beck et al. data to constrain the energy of the Th-229 isomer. Preprint at https://arxiv.org/abs/1702.00749 (2017).
Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic micro-calorimeter. Phys. Rev. Lett. 125, 142503 (2020). Currently the most precise γ-spectroscopic measurement of the isomer energy.
von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47â51 (2016). Direct detection of the isomer in recoil ions from the decay of 233U.
Church, E. L. & Weneser, J. Nuclear structure effects in internal conversion. Annu. Rev. Nucl. Sci. 10, 193â234 (1960).
Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243â246 (2019). Currently the most precise conversion electron measurement of the isomer energy.
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
Seiferle, B. Characterization of the 229Th Nuclear Clock Transition. PhD thesis, Ludwig-Maximilians Univ. (2019).
Gerstenkorn, S. et al. Structures hyperfines du spectre dâétincelle, moment magnétique et quadrupolaire de lâisotope 229 du thorium. J. Phys. 35, 483â495 (1974).
Bemis, C. E. et al. Coulomb excitation of states in 229Th. Phys. Scr. 38, 657â663 (1988).
Tkalya, E. V. Proposal for a nuclear gamma-ray laser of optical range. Phys. Rev. Lett. 106, 162501 (2011).
Dykhne, A. M. & Tkalya, E. V. Matrix element of the anomalously low-energy (3.5â±â0.5âeV) transition in 229Th and the isomer lifetime. JETP Lett. 67, 251â256 (1998).
Minkov, N. & Pálffy, A. Theoretical predictions for the magnetic dipole moment of 229mTh. Phys. Rev. Lett. 122, 162502 (2019).
Hayes, A. C., Friar, J. L. & Möller, P. Splitting sensitivity of the ground and 7.6âeV isomeric states of 229Th. Phys. Rev. C 78, 024311 (2008).
Berengut, J. C., Dzuba, V. A., Flambaum, V. V. & Porsev, S. G. Proposed experimental method to determine α sensitivity of splitting between ground and 7.6âeV isomeric states in 229Th. Phys. Rev. Lett. 102, 210801 (2009).
Porsev, S. G. & Flambaum, V. V. Electronic bridge process in 229Th+. Phys. Rev. A 81, 042516 (2010).
Karpeshin, F. F., Band, I. M. & Trzhaskovskaya, M. B. 3.5-eV isomer of 229mTh: how it can be produced. Nucl. Phys. A 654, 579â596 (1999).
Krutov, V. A. & Fomenko, V. N. Influence of electronic shell on gamma radiation of atomic nuclei. Ann. Phys. 476, 291â302 (1968).
Morita, M. Nuclear excitation by electron transition and its application to uranium 235 separation. Prog. Theor. Phys. 49, 1574â1586 (1973).
Izawa, Y. & Yamanaka, C. Production of 235Um by nuclear excitation by electron transition in a laser produced uranium plasma. Phys. Lett. B 88, 59â61 (1979).
Strizhov, V. & Tkalya, E. Decay channel of low-lying isomer state of the 229Th nucleus. Sov. Phys. JETP 72, 387â390 (1991).
Herrera-Sancho, O. A., Nemitz, N., Okhapkin, M. V. & Peik, E. Energy levels of Th+ between 7.3 and 8.3âeV. Phys. Rev. A 88, 1â7 (2013).
Porsev, S. G., Flambaum, V. V., Peik, E. & Tamm, C. Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+. Phys. Rev. Lett. 105, 182501 (2010).
Müller, R. A., Volotka, A. V. & Surzhykov, A. Excitation of the 229Th nucleus via a two-photon electronic transition. Phys. Rev. A 99, 042517 (2019).
Meier, D. M. Electronic level structure investigations in Th+ in the energy range of the 229Th isomer. PhD thesis, Leibniz Univ. (2019).
Thielking, J. Hyperfine Studies of Th-229 in its Nuclear Ground and Isomeric State. PhD thesis, Leibniz Univ. (2020).
Bilous, P. V. et al. Electronic bridge excitation in highly charged 229Th ions. Phys. Rev. Lett. 124, 192502 (2020).
Bilous, P. V., Minkov, N. & Pálffy, A. Electric quadrupole channel of the 7.8âeV 229Th transition. Phys. Rev. C 97, 044320 (2018).
Yamaguchi, A. et al. Experimental search for the low-energy nuclear transition in 229Th with undulator radiation. N. J. Phys. 17, 053053 (2015).
Kang, L., Lin, Z., Liu, F. & Huang, B. Removal of A-site alkali and alkaline earth metal cations in KBe2BO3F2-type layered structures to enhance the deep-ultraviolet nonlinear optical capability. Inorg. Chem. 57, 11146â11156 (2018).
Kanai, T. et al. Generation of vacuum-ultraviolet light below 160ânm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser. J. Opt. Soc. Am. B 21, 370 (2004).
Nakazato, T. et al. Phase-matched frequency conversion below 150ânm in KBe2BO3F2. Opt. Express 24, 17149 (2016).
Bjorklund, G. C. Effects of focusing on third-order nonlinear processes in isotropic media. IEEE J. Quantum Electron. 11, 287â296 (1975).
Hilbig, R., Hilber, G., Lago, A., Wolff, B. & Wallenstein, R. Tunable coherent VUV radiation generated by nonlinear optical frequency conversion in gases. Proc. SPIE 0613, https://doi.org/10.1117/12.960383 (1986).
Hanna, S. J. et al. A new broadly tunable (7.4â10.2âeV) laser based VUV light source and its first application to aerosol mass spectrometry. Int. J. Mass. Spectrom. 279, 134â146 (2009).
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234â237 (2005).
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
Witte, S., Zinkstok, R. T., Ubachs, W., Hogervorst, W. & Eikema, K. S. E. Deep-ultraviolet quantum interference metrology with ultrashort laser pulses. Science 307, 400â403 (2005).
Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815â820 (2009).
Seres, J. et al. All-solid-state VUV frequency comb at 160ânm using high-harmonic generation in nonlinear femtosecond enhancement cavity. Opt. Express 27, 6618â6628 (2019).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68â71 (2012).
Ozawa, A. & Kobayashi, Y. VUV frequency-comb spectroscopy of atomic xenon. Phys. Rev. A 87, 022507 (2013).
Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982â986 (1982).
Cohen-Tannoudji, C. & Guéry-Odelin, D. Advances in Atomic Physics: An Overview (World Scientific, 2011).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A 102, 052833 (2020).
Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006). Prediction of the unusually high sensitivity of a 229Th clock in a search for variations of fundamental constants.
Flambaum, V. V. & Wiringa, R. B. Enhanced effect of quark mass variation in 229Th and limits from Oklo data. Phys. Rev. C 79, 034301 (2009).
Stadnik, Y. V. & Flambaum, V. V. Can dark matter induce cosmological evolution of the fundamental constants of nature? Phys. Rev. Lett. 115, 201301 (2015).
Flambaum, V. V. Enhancing the effect of Lorentz invariance and Einsteinâs equivalence principle violation in nuclei and atoms. Phys. Rev. Lett. 117, 072501 (2016).
Magnetic micro-calorimeter raw data. https://zenodo.org/record/3931904#.X5WqQYj7SUl (Zenodo, 2020).
Acknowledgements
Our work on 229Th was supported by the European Unionâs Horizon 2020 research and innovation programme under grant agreement no. 664732 ânuClockâ, grant agreement no. 856415 âThoriumNuclearClockâ and grant agreement no. 882708 âCrystalClockâ. The team has also received funding from the EMPIR project âCC4Câ. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Unions Horizon 2020 research and innovation programme.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks Victor Flambaum, David Leibrandt and the other, anonymous, reviewer for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Sternheimer antishielding
-
An external electric field gradient may be strongly enhanced at the position of the nucleus by the influence of the deformed electron shell, especially in heavy atoms.
- Mössbauer spectroscopy
-
High-resolution, recoil-free gamma-ray spectroscopy performed with nuclei in solids, tuned via the Doppler shift between a moving source and stationary absorber.
- LambâDicke regime
-
When the motion of an absorber or emitter is constrained to a region that is smaller than the wavelength, the spectrum contains a resonance that is free from the first-order Doppler shift.
Rights and permissions
About this article
Cite this article
Beeks, K., Sikorsky, T., Schumm, T. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat Rev Phys 3, 238â248 (2021). https://doi.org/10.1038/s42254-021-00286-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-021-00286-6
This article is cited by
-
Quantum sensing for particle physics
Nature Reviews Physics (2024)
-
Laser spectroscopy of triply charged 229Th isomer for a nuclear clock
Nature (2024)
-
Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock
Nature (2024)
-
Controlling 229Th isomeric state population in a VUV transparent crystal
Nature Communications (2024)
-
Experimental apparatus for detection of radiative decay of \(^{229}\)Th isomer from Th-doped CaF\(_2\)
Interactions (2024)