Abstract
Quantum information processing relies on the precise control of non-classical states in the presence of many uncontrolled environmental degrees of freedom. The interactions between the relevant degrees of freedom and the environment are often viewed as detrimental, as they dissipate energy and decohere quantum states. Nonetheless, when controlled, dissipation is an essential tool for manipulating quantum information: dissipation engineering enables quantum measurement, quantum-state preparation and quantum-state stabilization. The advances in quantum technologies, marked by improvements of characteristic coherence times and extensible architectures for quantum control, have coincided with the development of such dissipation engineering tools that interface quantum and classical degrees of freedom. This Review presents dissipation as a fundamental aspect of the measurement and control of quantum devices, and highlights the role of dissipation engineering in quantum error correction and quantum simulation.
Key points
-
Dissipation is essential for quantum information processing: resetting to the ground state, measurement and cooling all require dissipation.
-
Carefully engineered dissipation can protect quantum information, control dynamics and enforce constraints.
-
Dissipation finds applications in quantum error correction, quantum sensing and quantum simulation.
-
Much of dissipation engineering focuses on designing âdarkâ or dissipation-free manifolds of states that are stabilized by the dissipative process.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Callen, H. B. & Welton, T. A. Irreversibility and generalized noise. Phys. Rev. 83, 34â40 (1951).
Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728â4731 (1996).
Boutin, S., Andersen, C. K., Venkatraman, J., Ferris, A. J. & Blais, A. Resonator reset in circuit QED by optimal control for large open quantum systems. Phys. Rev. A 96, 042315 (2017).
Magnard, P. et al. Fast and unconditional all-microwave reset of a superconducting qubit. Phys. Rev. Lett. 121, 060502 (2018).
Valenzuela, S. O. et al. Microwave-induced cooling of a superconducting qubit. Science 314, 1589â1592 (2006).
Geerlings, K. et al. Demonstrating a driven reset protocol for a superconducting qubit. Phys. Rev. Lett. 110, 120501 (2013).
Holland, E. T. et al. Single-photon-resolved cross-Kerr interaction for autonomous stabilization of photon-number states. Phys. Rev. Lett. 115, 180501 (2015).
Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853â857 (2015).
Kimchi-Schwartz, M. E. et al. Stabilizing entanglement via symmetry-selective bath engineering in superconducting qubits. Phys. Rev. Lett. 116, 240503 (2016).
Liu, Y. et al. Comparing and combining measurement-based and driven-dissipative entanglement stabilization. Phys. Rev. X 6, 011022 (2016).
Lu, Y. et al. Universal stabilization of a parametrically coupled qubit. Phys. Rev. Lett. 119, 150502 (2017).
Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. NPJ Quantum Inf. 5, 69 (2019).
Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158â5161 (1999).
Browne, D. E., Plenio, M. B. & Huelga, S. F. Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003).
Sørensen, A. S. & Mølmer, K. Measurement induced entanglement and quantum computation with atoms in optical cavities. Phys. Rev. Lett. 91, 097905 (2003).
Bretheau, L., Campagne-Ibarcq, P., Flurin, E., Mallet, F. & Huard, B. Quantum dynamics of an electromagnetic mode that cannot contain N photons. Science 348, 776â779 (2015).
Hacohen-Gourgy, S., Ramasesh, V. V., De Grandi, C., Siddiqi, I. & Girvin, S. M. Cooling and autonomous feedback in a BoseâHubbard chain with attractive interactions. Phys. Rev. Lett. 115, 240501 (2015).
Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51â57 (2019).
Yanay, Y., Braumüller, J., Gustavsson, S., Oliver, W. D. & Tahan, C. Two-dimensional hard-core BoseâHubbard model with superconducting qubits. NPJ Quantum Inf. 6, 58 (2020).
Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. https://doi.org/10.1038/s41567-020-0920-y (2020).
Kapit, E. The upside of noise: engineered dissipation as a resource in superconducting circuits. Quantum Sci. Technol. 2, 033002 (2017).
Leghtas, Z. et al. Hardware-efficient autonomous quantum memory protection. Phys. Rev. Lett. 111, 120501 (2013).
Touzard, S. et al. Coherent oscillations inside a quantum manifold stabilized by dissipation. Phys. Rev. X 8, 021005 (2018).
Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383â387 (2021).
Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669â674 (2022).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Degasperis, A., Fonda, L. & Ghirardi, G. C. Does the lifetime of an unstable system depend on the measuring apparatus? Nuovo Cim. A 21, 471â484 (1974).
Misra, B. & Sudarshan, E. C. G. The Zenoâs paradox in quantum theory. J. Math. Phys. 18, 756â763 (1977).
Itano, W. M., Heinzen, D. J., Bollinger, J. J. & Wineland, D. J. Quantum Zeno effect. Phys. Rev. A 41, 2295â2300 (1990).
Lane, A. M. Decay at early times: larger or smaller than the golden rule? Phys. Lett. A 99, 359â360 (1983).
Kofman, A. G. & Kurizki, G. Acceleration of quantum decay processes by frequent observations. Nature 405, 546â550 (2000).
Harrington, P. M., Monroe, J. T. & Murch, K. W. Quantum Zeno effects from measurement controlled qubit-bath interactions. Phys. Rev. Lett. 118, 240401 (2017).
Beige, A., Braun, D., Tregenna, B. & Knight, P. L. Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762â1765 (2000).
Facchi, P. & Pascazio, S. Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A 41, 493001 (2008).
Facchi, P. & Pascazio, S. Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002).
Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594â2597 (1998).
Hacohen-Gourgy, S., GarcÃa-Pintos, L. P., Martin, L. S., Dressel, J. & Siddiqi, I. Incoherent qubit control using the quantum Zeno effect. Phys. Rev. Lett. 120, 020505 (2018).
Sørensen, J. J. W. H., Dalgaard, M., Kiilerich, A. H., Mølmer, K. & Sherson, J. F. Quantum control with measurements and quantum Zeno dynamics. Phys. Rev. A 98, 062317 (2018).
Mark, M. J. et al. Interplay between coherent and dissipative dynamics of bosonic doublons in an optical lattice. Phys. Rev. Res. 2, 043050 (2020).
Raimond, J. M. et al. Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics. Phys. Rev. Lett. 105, 213601 (2010).
Raimond, J. M. et al. Quantum Zeno dynamics of a field in a cavity. Phys. Rev. A 86, 032120 (2012).
Kumar, P., Snizhko, K., Gefen, Y. & Rosenow, B. Optimized steering: quantum state engineering and exceptional points. Phys. Rev. A 105, L010203 (2022).
Snizhko, K., Kumar, P. & Romito, A. Quantum Zeno effect appears in stages. Phys. Rev. Res. 2, 033512 (2020).
Zhu, B. et al. Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect. Phys. Rev. Lett. 112, 070404 (2014).
Chen, T. et al. Quantum Zeno effects across a parity-time symmetry breaking transition in atomic momentum space. NPJ Quantum Inf. https://doi.org/10.1038/s41534-021-00417-y (2021).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).
Shruti, P. et al. Bias-preserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020).
Blumenthal, E. et al. Demonstration of universal control between non-interacting qubits using the Quantum Zeno effect. npj Quantum Inf. 8, 88 (2022).
Shankar, S. et al. Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419 (2013).
Murch, K. W. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).
Puri, S., Boutin, S. & Blais, A. Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving. NPJ Quantum Inf. 3, 18 (2017).
Mamaev, M., Govia, L. C. G. & Clerk, A. A. Dissipative stabilization of entangled cat states using a driven BoseâHubbard dimer. Quantum 2, 58 (2018).
Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).
Souquet, J.-R. & Clerk, A. A. Fock-state stabilization and emission in superconducting circuits using dc-biased Josephson junctions. Phys. Rev. A 93, 060301 (2016).
Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415â418 (2013).
Kienzler, D. et al. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 347, 53â56 (2015).
Plenio, M. B., Huelga, S. F., Beige, A. & Knight, P. L. Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468â2475 (1999).
Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008).
Kastoryano, M. J., Reiter, F. & Sørensen, A. S. Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502 (2011).
Morigi, G. et al. Dissipative quantum control of a spin chain. Phys. Rev. Lett. 115, 200502 (2015).
Ma, X., Viennot, J. J., Kotler, S., Teufel, J. D. & Lehnert, K. W. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nat. Phys. 17, 322â326 (2021).
Cole, D. C. et al. Resource-efficient dissipative entanglement of two trapped-ion qubits. Phys. Rev. Lett. 128, 080502 (2022).
Aron, C., Kulkarni, M. & Türeci, H. E. Steady-state entanglement of spatially separated qubits via quantum bath engineering. Phys. Rev. A 90, 062305 (2014).
Rao, D. D. B. & Mølmer, K. Deterministic entanglement of Rydberg ensembles by engineered dissipation. Phys. Rev. A 90, 062319 (2014).
Martin, L., Sayrafi, M. & Whaley, K. B. What is the optimal way to prepare a Bell state using measurement and feedback? Quantum Sci. Technol. 2, 044006 (2017).
Rao, D. D. B., Yang, S. & Wrachtrup, J. Dissipative entanglement of solid-state spins in diamond. Phys. Rev. A 95, 022310 (2017).
Schuetz, M. J. A., Kessler, E. M., Vandersypen, L. M. K., Cirac, J. I. & Giedke, G. Nuclear spin dynamics in double quantum dots: multistability, dynamical polarization, criticality, and entanglement. Phys. Rev. B 89, 195310 (2014).
Shao, X. Q., Wu, J. H. & Yi, X. X. Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade. Phys. Rev. A 95, 062339 (2017).
Didier, N., Guillaud, J., Shankar, S. & Mirrahimi, M. Remote entanglement stabilization and concentration by quantum reservoir engineering. Phys. Rev. A 98, 012329 (2018).
Reiter, F., Reeb, D. & Sørensen, A. S. Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117, 040501 (2016).
Ma, S.-l., Li, X.-k., Liu, X.-y., Xie, J.-k. & Li, F.-l. Stabilizing Bell states of two separated superconducting qubits via quantum reservoir engineering. Phys. Rev. A 99, 042336 (2019).
Sharma, V. & Mueller, E. J. Driven-dissipative control of cold atoms in tilted optical lattices. Phys. Rev. A 103, 043322 (2021).
Colladay, K. R. & Mueller, E. J. Driven dissipative preparation of few-body Laughlin states of Rydberg polaritons in twisted cavities. Preprint at https://arxiv.org/abs/2107.06346 (2021).
Ticozzi, F. & Viola, L. Quantum Markovian subsystems: invariance, attractivity, and control. IEEE Trans. Automat. Contr. 53, 2048â2063 (2008).
Braginskii, V., Manukin, A. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. J. Exp. Theor. Phys. 31, 829 (1970).
Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174â3177 (1999).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89â92 (2011).
Rivière, R. et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011).
Yong-Chun, L., Yu-Wen, H., Wei, W. C. & Yun-Feng, X. Review of cavity optomechanical cooling. Chin. Phys. B 22, 114213 (2013).
Wineland, D. J. & Itano, W. M. Laser cooling. Phys. Today 40, 34â40 (1987).
Hänsch, T. & Schawlow, A. Cooling of gases by laser radiation. Opt. Commun. 13, 68â69 (1975).
Schreck, F. & Druten, K. V. Laser cooling for quantum gases. Nat. Phys. 17, 1296â1304 (2021).
Phillips, W. D. Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721â741 (1998).
Stenholm, S. The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699â739 (1986).
Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403â406 (1989).
Wiseman, H. M. & Milburn, G. J. All-optical versus electro-optical quantum-limited feedback. Phys. Rev. A 49, 4110â4125 (1994).
Lloyd, S. Coherent quantum feedback. Phys. Rev. A 62, 022108 (2000).
Zurek, W. H. Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516â1525 (1981).
Jacobs, K. & Steck, D. A. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47, 279â303 (2006).
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155â1208 (2010).
Braginsky, V. B. & Khalili, F. Y. Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1â11 (1996).
Wheeler, J. A. & Zurek, W. H. (eds) Quantum Theory and Measurement (Princeton Univ. Press, 2014); https://doi.org/10.1515/9781400854554
Hatridge, M. et al. Quantum back-action of an individual variable-strength measurement. Science 339, 178â181 (2013).
Weber, S. J. et al. Mapping the optimal route between two quantum states. Nature 511, 570â573 (2014).
Campagne-Ibarcq, P. et al. Observing quantum state diffusion by heterodyne detection of fluorescence. Phys. Rev. X 6, 011002 (2016).
Hacohen-Gourgy, S. et al. Quantum dynamics of simultaneously measured non-commuting observables. Nature 538, 491â494 (2016).
Flurin, E., Martin, L. S., Hacohen-Gourgy, S. & Siddiqi, I. Using a recurrent neural network to reconstruct quantum dynamics of a superconducting qubit from physical observations. Phys. Rev. X 10, 011006 (2020).
Lloyd, S. & Viola, L. Engineering quantum dynamics. Phys. Rev. A 65, 010101 (2001).
Herasymenko, Y., Gornyi, I. & Gefen, Y. Measurement-driven navigation in many-body Hilbert space: active-decision steering. Preprint at https://arxiv.org/abs/2111.09306 (2021).
Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2009).
Martin, L. S., Livingston, W. P., Hacohen-Gourgy, S., Wiseman, H. M. & Siddiqi, I. Implementation of a canonical phase measurement with quantum feedback. Nat. Phys. 16, 1046â1049 (2020).
Gertler, J. M. et al. Protecting a bosonic qubit with autonomous quantum error correction. Nature 590, 243â248 (2021).
Ahn, C., Doherty, A. C. & Landahl, A. J. Continuous quantum error correction via quantum feedback control. Phys. Rev. A 65, 042301 (2002).
Atalaya, J. et al. Continuous quantum error correction for evolution under time-dependent Hamiltonians. Phys. Rev. A 103, 042406 (2021).
Kerckhoff, J., Nurdin, H. I., Pavlichin, D. S. & Mabuchi, H. Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. Phys. Rev. Lett. 105, 040502 (2010).
Kapit, E. Hardware-efficient and fully autonomous quantum error correction in superconducting circuits. Phys. Rev. Lett. 116, 150501 (2016).
Reiter, F., Sørensen, A. S., Zoller, P. & Muschik, C. A. Dissipative quantum error correction and application to quantum sensing with trapped ions. Nat. Commun. 8, 1822 (2017).
Albert, V. V. et al. Pair-cat codes: autonomous error-correction with low-order nonlinearity. Quantum Sci. Technol. 4, 035007 (2019).
Sarovar, M. & Milburn, G. J. Continuous quantum error correction by cooling. Phys. Rev. A 72, 012306 (2005).
de Neeve, B. & Nguyen, T.-L. & Behrle, T. & Home, J. P. Error correction of a logical grid state qubit by dissipative pumping. Nat. Phys 18, 296300 (2022).
Kristensen, L. B., Kjaergaard, M., Andersen, C. K. & Zinner, N. T. Hybrid quantum error correction in qubit architectures. Preprint at https://arxiv.org/abs/1909.09112 (2019).
Lihm, J.-M., Noh, K. & Fischer, U. R. Implementation-independent sufficient condition of the KnillâLaflamme type for the autonomous protection of logical qudits by strong engineered dissipation. Phys. Rev. A 98, 012317 (2018).
Gyenis, A. et al. Moving beyond the transmon: noise-protected superconducting quantum circuits. PRX Quantum 2, 030101 (2021).
Peres, A. Reversible logic and quantum computers. Phys. Rev. A 32, 3266â3276 (1985).
Bultink, C. C. et al. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements. Sci. Adv. 6, eaay3050 (2020).
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Córcoles, A. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. https://doi.org/10.1038/ncomms7979 (2015).
Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).
Cai, W., Ma, Y., Wang, W., Zou, C.-L. & Sun, L. Bosonic quantum error correction codes in superconducting quantum circuits. Fundam. Res. 1, 50â67 (2021).
Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).
Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705â710 (2018).
Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014).
Guillaud, J. & Mirrahimi, M. Repetition cat qubits for fault-tolerant quantum computation. Phys. Rev. X 9, 041053 (2019).
Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205â209 (2020).
Tóth, L. D., Bernier, N. R., Nunnenkamp, A., Feofanov, A. K. & Kippenberg, T. J. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787â793 (2017).
Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441â445 (2016).
Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503â508 (2019).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368â372 (2020).
Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513â517 (2019).
Livingston, W. P. et al. Experimental demonstration of continuous quantum error correction. Nat. Commun. 13, 2307 (2022).
Minev, Z. K. et al. To catch and reverse a quantum jump mid-flight. Nature 570, 200â204 (2019).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644â647 (2008).
Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648â651 (2008).
Kolkowitz, S. et al. Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129â1132 (2015).
Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45â50 (2021).
Serniak, K. et al. Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).
Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547â557 (1980).
LupaÅcu, A. et al. Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119â123 (2007).
Xie, Y. et al. Dissipative quantum sensing with a magnetometer based on nitrogen-vacancy centers in diamond. Phys. Rev. Appl. 14, 014013 (2020).
Khanahmadi, M. & Mølmer, K. Time-dependent atomic magnetometry with a recurrent neural network. Phys. Rev. A 103, 032406 (2021).
Nolan, S. P., Smerzi, A. & Pezzè, L. A machine learning approach to Bayesian parameter estimation. Preprint at https://arxiv.org/abs/2006.02369 (2021).
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277â284 (2012).
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285â291 (2012).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995â1001 (2017).
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292â299 (2012).
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411â425 (2020).
Noh, C. & Angelakis, D. G. Quantum simulations and many-body physics with light. Rep. Progr. Phys. 80, 016401 (2016).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153â185 (2014).
Poplavskii, R. P. Thermodynamic models of information processes. Phys. Usp. 18, 222â241 (1975).
Manin, Y. I. Vychislimoe i nevychislimoe [Computable and uncomputable]. Sov. Radio Moscow 13â15 (1980).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467â488 (1982).
Feynman, R. P. Quantum mechanical computers. Opt. News 11, 11â20 (1985).
Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382â388 (2010).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579â584 (2017).
Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486â491 (2011).
Kollár, A. J., Fitzpatrick, M. & Houck, A. A. Hyperbolic lattices in circuit quantum electrodynamics. Nature 571, 45â50 (2019).
Hoening, M., Abdussalam, W., Fleischhauer, M. & Pohl, T. Antiferromagnetic long-range order in dissipative Rydberg lattices. Phys. Rev. A 90, 021603 (2014).
Sieberer, L. M., Buchhold, M. & Diehl, S. Keldysh field theory for driven open quantum systems. Rep. Progr. Phys. 79, 096001 (2016).
Foss-Feig, M. et al. Emergent equilibrium in many-body optical bistability. Phys. Rev. A 95, 043826 (2017).
Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856â10915 (2019).
Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555â7560 (2017).
OâMalley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
Dorner, R., Goold, J. & Vedral, V. Towards quantum simulations of biological information flow. Interface Focus 2, 522â528 (2012).
Ribeiro, H. & Marquardt, F. Kinetics of many-body reservoir engineering. Phys. Rev. Res. 2, 033231 (2020).
Wang, H. Quantum algorithm for preparing the ground state of a system via resonance transition. Sci. Rep. https://doi.org/10.1038/s41598-017-16396-0 (2017).
Sharma, V. & Mueller, E. J. Driven-dissipative control of cold atoms in tilted optical lattices. Phys. Rev. A 103, 043322 (2021).
Zhou, L., Choi, S. & Lukin, M. D. Symmetry-protected dissipative preparation of matrix product states. Phys. Rev. A 104, 032418 (2021).
Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369â395 (2020).
Roy, S., Chalker, J. T., Gornyi, I. V. & Gefen, Y. Measurement-induced steering of quantum systems. Phys. Rev. Res. 2, 033347 (2020).
Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014).
Das, A. & Chakrabarti, B. K. Colloquium: Quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061â1081 (2008).
Stormer, H. L., Tsui, D. C. & Gossard, A. C. The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298âS305 (1999).
Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362â396 (1991).
Roncaglia, M., Rizzi, M. & Cirac, J. I. Pfaffian state generation by strong three-body dissipation. Phys. Rev. Lett. 104, 096803 (2010).
Daley, A. J., Taylor, J. M., Diehl, S., Baranov, M. & Zoller, P. Atomic three-body loss as a dynamical three-body interaction. Phys. Rev. Lett. 102, 040402 (2009).
Diehl, S., Baranov, M., Daley, A. J. & Zoller, P. Quantum field theory for the three-body constrained lattice Bose gas. I. Formal developments. Phys. Rev. B 82, 064509 (2010).
Diehl, S., Baranov, M., Daley, A. J. & Zoller, P. Quantum field theory for the three-body constrained lattice Bose gas. II. Application to the many-body problem. Phys. Rev. B 82, 064510 (2010).
Dogra, N. et al. Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science 366, 1496â1499 (2019).
Zundel, L. A. et al. Energy-dependent three-body loss in 1D Bose gases. Phys. Rev. Lett. 122, 013402 (2019).
Bonnes, L. & Wessel, S. Pair superfluidity of three-body constrained bosons in two dimensions. Phys. Rev. Lett. 106, 185302 (2011).
Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329â1331 (2008).
Fröml, H., Muckel, C., Kollath, C., Chiocchetta, A. & Diehl, S. Ultracold quantum wires with localized losses: many-body quantum Zeno effect. Phys. Rev. B 101, 144301 (2020).
Tomita, T., Nakajima, S., Takasu, Y. & Takahashi, Y. Dissipative BoseâHubbard system with intrinsic two-body loss. Phys. Rev. A 99, 031601 (2019).
Dürr, S. et al. LiebâLiniger model of a dissipation-induced TonksâGirardeau gas. Phys. Rev. A 79, 023614 (2009).
Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014).
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Stannigel, K. et al. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms. Phys. Rev. Lett. 112, 120406 (2014).
Caballar, R. C. F., Diehl, S., Mäkelä, H., Oberthaler, M. & Watanabe, G. Dissipative preparation of phase- and number-squeezed states with ultracold atoms. Phys. Rev. A 89, 013620 (2014).
Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268â279 (2020).
Schmitt, J. et al. Observation of grand-canonical number statistics in a photon BoseâEinstein condensate. Phys. Rev. Lett. 112, 030401 (2014).
Hafezi, M., Adhikari, P. & Taylor, J. M. Chemical potential for light by parametric coupling. Phys. Rev. B 92, 174305 (2015).
Verstraete, F., Wolf, M. M. & Cirac, I. J. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633â636 (2009).
Jaschke, D., Montangero, S. & Carr, L. D. One-dimensional many-body entangled open quantum systems with tensor network methods. Quantum Sci. Technol. 4, 013001 (2018).
Yanay, Y. & Clerk, A. A. Reservoir engineering of bosonic lattices using chiral symmetry and localized dissipation. Phys. Rev. A 98, 043615 (2018).
Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878â883 (2008).
Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nat. Phys. 7, 971â977 (2011).
Cian, Z.-P. et al. Photon pair condensation by engineered dissipation. Phys. Rev. Lett. 123, 063602 (2019).
Bardyn, C.-E. et al. Topology by dissipation. New J. Phys. 15, 085001 (2013).
Shavit, G. & Goldstein, M. Topology by dissipation: transport properties. Phys. Rev. B 101, 125412 (2020).
Goldstein, M. Dissipation-induced topological insulators: a no-go theorem and a recipe. SciPost Phys. 7, 67 (2019).
Iemini, F., Rossini, D., Fazio, R., Diehl, S. & Mazza, L. Dissipative topological superconductors in number-conserving systems. Phys. Rev. B 93, 115113 (2016).
Dangel, F., Wagner, M., Cartarius, H., Main, J. & Wunner, G. Topological invariants in dissipative extensions of the SuâSchriefferâHeeger model. Phys. Rev. A 98, 013628 (2018).
Barbarino, S., Yu, J., Zoller, P. & Budich, J. C. Preparing atomic topological quantum matter by adiabatic nonunitary dynamics. Phys. Rev. Lett. 124, 010401 (2020).
Kitaev, A. & Laumann, C. Topological phases and quantum computation. In Exact Methods in Low-dimensional Statistical Physics and Quantum Computing. Lecture Notes of the Les Houches Summer School Vol. 89 (eds Jacobsen, J. et al.) 101â125 (Oxford Univ. Press, 2010).
Pincus, M. A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper. Res. 18, 1225â1228 (1970).
Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).
Chen, D., Meldgin, C. & DeMarco, B. Bath-induced band decay of a Hubbard lattice gas. Phys. Rev. A 90, 013602 (2014).
Lena, R. G. & Daley, A. J. Dissipative dynamics and cooling rates of trapped impurity atoms immersed in a reservoir gas. Phys. Rev. A 101, 033612 (2020).
McKay, D. C., Meldgin, C., Chen, D. & DeMarco, B. Slow thermalization between a lattice and free Bose gas. Phys. Rev. Lett. 111, 063002 (2013).
Shabani, A. & Neven, H. Artificial quantum thermal bath: engineering temperature for a many-body quantum system. Phys. Rev. A 94, 052301 (2016).
Metcalf, M., Moussa, J. E., de Jong, W. A. & Sarovar, M. Engineered thermalization and cooling of quantum many-body systems. Phys. Rev. Res. 2, 023214 (2020).
Su, H.-Y. & Li, Y. Quantum algorithm for the simulation of open-system dynamics and thermalization. Phys. Rev. A 101, 012328 (2020).
Schönleber, D. W., Bentley, C. D. B. & Eisfeld, A. Engineering thermal reservoirs for ultracold dipoleâdipole-interacting Rydberg atoms. New J. Phys. 20, 013011 (2018).
Dive, B., Mintert, F. & Burgarth, D. Quantum simulations of dissipative dynamics: time dependence instead of size. Phys. Rev. A 92, 032111 (2015).
Griessner, A., Daley, A. J., Clark, S. R., Jaksch, D. & Zoller, P. Dissipative dynamics of atomic Hubbard models coupled to a phonon bath: dark state cooling of atoms within a Bloch band of an optical lattice. New J. Phys. 9, 44â44 (2007).
Yanay, Y. & Clerk, A. A. Reservoir engineering with localized dissipation: dynamics and prethermalization. Phys. Rev. Res. 2, 023177 (2020).
Liu, Y.-C., Hu, Y.-W., Wong, C. W. & Xiao, Y.-F. Review of cavity optomechanical cooling. Chin. Phys. B 22, 114213 (2013).
Letokhov, V. S., Olâshanii, M. A. & Ovchinnikov, Y. B. Laser cooling of atoms: a review. Quantum Semiclass. Opt. 7, 5â40 (1995).
Marquardt, F., Clerk, A. & Girvin, S. Quantum theory of optomechanical cooling. J. Mod. Opt. 55, 3329â3338 (2008).
McKay, D. C. & DeMarco, B. Cooling in strongly correlated optical lattices: prospects and challenges. Rep. Progr. Phys. 74, 054401 (2011).
Guo, J., Norte, R. & Gröblacher, S. Feedback cooling of a room temperature mechanical oscillator close to its motional ground state. Phys. Rev. Lett. 123, 223602 (2019).
Shen, C. et al. Quantum channel construction with circuit quantum electrodynamics. Phys. Rev. B 95, 134501 (2017).
Di Candia, R., Pedernales, J. S., del Campo, A., Solano, E. & Casanova, J. Quantum simulation of dissipative processes without reservoir engineering. Sci. Rep. 5, 9981 (2015).
Chenu, A., Beau, M., Cao, J. & del Campo, A. Quantum simulation of generic many-body open system dynamics using classical noise. Phys. Rev. Lett. 118, 140403 (2017).
Sweke, R., Sinayskiy, I., Bernard, D. & Petruccione, F. Universal simulation of Markovian open quantum systems. Phys. Rev. A 91, 062308 (2015).
Zanardi, P., Marshall, J. & Campos Venuti, L. Dissipative universal Lindbladian simulation. Phys. Rev. A 93, 022312 (2016).
Carmele, A., Knorr, A. & Milde, F. Stabilization of photon collapse and revival dynamics by a non-Markovian phonon bath. New J. Phys. 15, 105024 (2013).
Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).
Cai, Z., Schollwöck, U. & Pollet, L. Identifying a bath-induced Bose liquid in interacting spin-boson models. Phys. Rev. Lett. 113, 260403 (2014).
Maghrebi, M. F. & Gorshkov, A. V. Nonequilibrium many-body steady states via Keldysh formalism. Phys. Rev. B 93, 014307 (2016).
Hurst, H. M., Guo, S. & Spielman, I. B. Feedback induced magnetic phases in binary BoseâEinstein condensates. Phys. Rev. Research 2, 043325 (2020).
Tomita, T., Nakajima, S., Danshita, I., Takasu, Y. & Takahashi, Y. Observation of the Mott insulator to superfluid crossover of a driven-dissipative BoseâHubbard system. Sci. Adv. https://advances.sciencemag.org/content/3/12/e1701513 (2017).
Rylands, C., Guo, Y., Lev, B. L., Keeling, J. & Galitski, V. Photon-mediated Peierls transition of a 1D gas in a multimode optical cavity. Phys. Rev. Lett. 125, 010404 (2020).
Sieberer, L. M., Huber, S. D., Altman, E. & Diehl, S. Dynamical critical phenomena in driven-dissipative systems. Phys. Rev. Lett. 110, 195301 (2013).
Essink, S., Wolff, S., Schütz, G. M., Kollath, C. & Popkov, V. Transition between dissipatively stabilized helical states. Phys. Rev. Res. 2, 022007 (2020).
Scarlatella, O., Fazio, R. & Schiró, M. Emergent finite frequency criticality of driven-dissipative correlated lattice bosons. Phys. Rev. B 99, 064511 (2019).
Mathey, S. & Diehl, S. Absence of criticality in the phase transitions of open Floquet systems. Phys. Rev. Lett. 122, 110602 (2019).
Brennecke, F. et al. Real-time observation of fluctuations at the driven-dissipative Dicke phase transition. Proc. Natl Acad. Sci. USA 110, 11763â11767 (2013).
Foss-Feig, M. et al. Emergent equilibrium in many-body optical bistability. Phys. Rev. A 95, 043826 (2017).
Fitzpatrick, M., Sundaresan, N. M., Li, A. C. Y., Koch, J. & Houck, A. A. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X 7, 011016 (2017).
Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. Matter Phys. 11, 467â499 (2020).
Sacha, K. & Zakrzewski, J. Time crystals: a review. Rep. Progr. Phys. 81, 016401 (2017).
Riera-Campeny, A., Moreno-Cardoner, M. & Sanpera, A. Time crystallinity in open quantum systems. Quantum 4, 270 (2020).
BuÄa, B., Tindall, J. & Jaksch, D. Non-stationary coherent quantum many-body dynamics through dissipation. Nat. Commun. 10, 1730 (2019).
Marais, A. et al. The future of quantum biology. J. R. Soc. Interface 15, 20180640 (2018).
Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).
Angelatos, G., Khan, S. A. & Türeci, H. E. Reservoir computing approach to quantum state measurement. Phys. Rev. X 11, 041062 (2021).
Carroll, T. L. Optimizing memory in reservoir computers. Chaos 32, 023123 (2022).
Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113â116 (2009).
Gyenis, A. et al. Moving beyond the transmon: noise-protected superconducting quantum circuits. PRX Quantum 2, 030101 (2021).
Deffner, S. & Campbell, S. Quantum Thermodynamics, 2053â2571 (Morgan & Claypool, 2019); https://doi.org/10.1088/2053-2571/ab21c6
Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545â579 (2016).
Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863â883 (2011).
Maldacena, J., Shenker, S. H. & Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 106 (2016).
Nahum, A., Vijay, S. & Haah, J. Operator spreading in random unitary circuits. Phys. Rev. X 8, 021014 (2018).
Li, Y. & Fisher, M. P. A. Statistical mechanics of quantum error correcting codes. Phys. Rev. B 103, 104306 (2021).
DâAlessio, L., Kafri, Y., Polkovnikov, A. & Rigol, M. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239â362 (2016).
Luitz, D. J. & Bar Lev, Y. Information propagation in isolated quantum systems. Phys. Rev. B 96, 020406 (2017).
Chan, A., Nandkishore, R. M., Pretko, M. & Smith, G. Unitary-projective entanglement dynamics. Phys. Rev. B 99, 224307 (2019).
Li, Y., Chen, X. & Fisher, M. P. A. Measurement-driven entanglement transition in hybrid quantum circuits. Phys. Rev. B 100, 134306 (2019).
Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).
Ippoliti, M., Gullans, M. J., Gopalakrishnan, S., Huse, D. A. & Khemani, V. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 11, 011030 (2021).
Marino, J. Universality class of Ising critical states with long-range losses. Preprint at https://arxiv.org/abs/2108.12422 (2021).
Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046â2049 (1991).
Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15â38 (2015).
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
Khemani, V., Vishwanath, A. & Huse, D. A. Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws. Phys. Rev. X 8, 031057 (2018).
Valdez, M. A., Jaschke, D., Vargas, D. L. & Carr, L. D. Quantifying complexity in quantum phase transitions via mutual information complex networks. Phys. Rev. Lett. 119, 225301 (2017).
Walschaers, M., Treps, N., Sundar, B., Carr, L. D. & Parigi, V. Emergent complex quantum networks in continuous-variables non-Gaussian states. Preprint at https://arxiv.org/abs/2012.15608 (2021).
Zwolak, M. & Vidal, G. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004).
Cui, J., Cirac, J. I. & Bañuls, M. C. Variational matrix product operators for the steady state of dissipative quantum systems. Phys. Rev. Lett. 114, 220601 (2015).
Nagy, A. & Savona, V. Variational quantum Monte Carlo method with a neural-network ansatz for open quantum systems. Phys. Rev. Lett. 122, 250501 (2019).
Hartmann, M. J. & Carleo, G. Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 122, 250502 (2019).
Vicentini, F., Biella, A., Regnault, N. & Ciuti, C. Variational neural-network ansatz for steady states in open quantum systems. Phys. Rev. Lett. 122, 250503 (2019).
Yoshioka, N. & Hamazaki, R. Constructing neural stationary states for open quantum many-body systems. Phys. Rev. B 99, 214306 (2019).
Liu, Z., Duan, L.-M. & Deng, D.-L. Solving quantum master equations with deep quantum neural networks. Phys. Rev. Res. 4, 013097 (2022).
de Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).
Vacchini, B. Frontiers of Open Quantum System Dynamics, 71â85 (Springer, 2019); https://doi.org/10.1007/978-3-030-06122-7_4
Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439â3443 (1994).
Wootters, W. K. Statistical distance and Hilbert space. Phys. Rev. D 23, 357â362 (1981).
Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).
Naghiloo, M., Abbasi, M., Joglekar, Y. N. & Murch, K. W. Quantum state tomography across the exceptional point in a single dissipative qubit. Nat. Phys. 15, 1232â1236 (2019).
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11â19 (2018).
Kraus, K., Böhm, A., Dollard, J. D. & Wootters, W. H. States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, 1983).
Acknowledgements
We thank M. Hays, P. McMahon, A. Di Paulo and Y. Yanay for critical comments. This research was supported by an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at MIT, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the Office of the Director of National Intelligence. This material is based upon work supported by the National Science Foundation under grant no. PHY-2110250, no. PHY-1752844 (CAREER), and a New Frontier Grant awarded by the College of Arts and Sciences at Cornell.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Harrington, P.M., Mueller, E.J. & Murch, K.W. Engineered dissipation for quantum information science. Nat Rev Phys 4, 660â671 (2022). https://doi.org/10.1038/s42254-022-00494-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-022-00494-8