Abstract
Rydberg atom arrays have emerged as a novel platform exhibiting rich quantum many-body physics and offering promise for universal quantum computation. The Rydberg blockade effect plays an essential role in establishing many-body correlations in this system. Over the past 2 or 3âyears, Rydberg arrays have been used to realize exotic ground states such as spin liquids, quantum many-body scar states violating quantum thermalization, and a confinementâdeconfinement transition through quantum dynamics. In this Perspective, we use lattice gauge theory as a universal theoretical framework to describe the Rydberg blockade effect and the recent exciting developments in this system from equilibrium phases to quantum dynamics. Analysing Rydberg atom arrays through this theoretical framework can reveal their connection with other strongly correlated systems, such as the FermiâHubbard model and the lattice gauge model, which can inspire the discovery of new phenomena in this platform.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).
Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313â2363 (2010).
Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 534, 667â670 (2016).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579â584 (2017).
Lienhard, V. et al. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic Ising models with antiferromagnetic interactions. Phys. Rev. X 8, 021070 (2018).
Levine, H. et al. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018).
Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570â574 (2019).
Keesling, A. et al. Quantum KibbleâZurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207â211 (2019).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132â142 (2020).
Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355â1359 (2021).
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233â238 (2021).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227â232 (2021).
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242â1247 (2021).
Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468â473 (2023).
Bornet, G. et al. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 621, 728â733 (2023).
Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734â739 (2023).
Zhang, J. et al. Probing quantum floating phases in Rydberg atom arrays. Preprint at https://arxiv.org/abs/2401.08087 (2024).
Beugnon, J. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696â699 (2007).
Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. Commun. 7, 13317 (2016).
Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B At. Mol. Opt. Phys. 49, 202001 (2016).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021â1023 (2016).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024â1027 (2016).
Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).
Schymik, K.-N. et al. Enhanced atom-by-atom assembly of arbitrary tweezer arrays. Phys. Rev. A 102, 063107 (2020).
Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857â861 (2020).
Morgado, M. & Whitlock, S. Quantum simulation and computing with Rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021).
Wu, X. et al. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B 30, 020305 (2021).
Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451â456 (2022).
Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).
Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265â1269 (2023).
Graham, T. M. et al. Midcircuit measurements on a single-species neutral alkali atom quantum processor. Phys. Rev. X 13, 041051 (2023).
Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268â272 (2023).
Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273â278 (2023).
Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279â284 (2023).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58â65 (2024).
Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).
Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).
Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).
Celi, A. et al. Emerging two-dimensional gauge theories in Rydberg configurable arrays. Phys. Rev. X 10, 021057 (2020).
Cheng, Y., Liu, S., Zheng, W., Zhang, P. & Zhai, H. Tunable confinement-deconfinement transition in an ultracold-atom quantum simulator. PRX Quantum 3, 040317 (2022).
Pan, L. & Zhai, H. Composite spin approach to the blockade effect in Rydberg atom arrays. Phys. Rev. Res. 4, L032037 (2022).
Cheng, Y., Li, C. & Zhai, H. Variational approach to quantum spin liquid in a Rydberg atom simulator. New J. Phys. 25, 033010 (2023).
Halimeh, J. C., Barbiero, L., Hauke, P., Grusdt, F. & Bohrdt, A. Robust quantum many-body scars in lattice gauge theories. Quantum 7, 1004 (2023).
Desaules, J.-Y. et al. Weak ergodicity breaking in the Schwinger model. Phys. Rev. B 107, L201105 (2023).
Polyakov, A. M. Gauge Fields and Strings (Taylor & Francis, 1987).
Zhang, S. C., Hansson, T. H. & Kivelson, S. Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82â85 (1989).
Zhang, S. C. The Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 06, 25â58 (1992).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17â85 (2006).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2007).
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Halimeh, J. C., Aidelsburger, M., Grusdt, F., Hauke, P. & Yang, B. Cold-atom quantum simulators of gauge theories. Preprint at https://arxiv.org/abs/2310.12201 (2023).
Yang, B. et al. Observation of gauge invariance in a 71-site BoseâHubbard quantum simulator. Nature 587, 392â396 (2020).
Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311â314 (2022).
Wang, H.-Y. et al. Interrelated thermalization and quantum criticality in a lattice gauge simulator. Phys. Rev. Lett. 131, 050401 (2023).
Fendley, P., Sengupta, K. & Sachdev, S. Competing density-wave orders in a one-dimensional hard-boson model. Phys. Rev. B 69, 075106 (2004).
Lesanovsky, I. Many-body spin interactions and the ground state of a dense Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011).
Lesanovsky, I. & Katsura, H. Interacting Fibonacci anyons in a Rydberg gas. Phys. Rev. A 86, 041601 (2012).
Lesanovsky, I. Liquid ground state, gap, and excited states of a strongly correlated spin chain. Phys. Rev. Lett. 108, 105301 (2012).
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & PapiÄ, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745â749 (2018).
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & PapiÄ, Z. Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B 98, 155134 (2018).
Michailidis, A. A. et al. Slow dynamics in translation-invariant quantum lattice models. Phys. Rev. B 97, 104307 (2018).
Iadecola, T., Schecter, M. & Xu, S. Quantum many-body scars from magnon condensation. Phys. Rev. B 100, 184312 (2019).
Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach. Phys. Rev. Lett. 122, 040603 (2019).
Mark, D. K., Lin, C.-J. & Motrunich, O. I. Exact eigenstates in the Lesanovsky model, proximity to integrability and the PXP model, and approximate scar states. Phys. Rev. B 101, 094308 (2020).
Bull, K., Desaules, J.-Y. & PapiÄ, Z. Quantum scars as embeddings of weakly broken Lie algebra representations. Phys. Rev. B 101, 165139 (2020).
Serbyn, M., Abanin, D. A. & PapiÄ, Z. Quantum many-body scars and weak breaking of ergodicity. Nat. Phys. 17, 675â685 (2021).
Turner, C. J., Desaules, J.-Y., Bull, K. & PapiÄ, Z. Correspondence principle for many-body scars in ultracold Rydberg atoms. Phys. Rev. X 11, 021021 (2021).
Moudgalya, S., Bernevig, B. A. & Regnault, N. Quantum many-body scars and Hilbert space fragmentation: a review of exact results. Rep. Prog. Phys. 85, 086501 (2022).
Barnes, S. E. New method for the Anderson model. J. Phys. F Met. Phys. 6, 1375 (1976).
Read, N. & Newns, D. M. A new functional integral formalism for the degenerate Anderson model. J. Phys. C Solid State Phys. 16, L1055 (1983).
Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 29, 3035â3044 (1984).
Schwinger, J. Gauge invariance and mass. Phys. Rev. 125, 397â398 (1962).
Schwinger, J. Gauge invariance and mass. II. Phys. Rev. 128, 2425â2429 (1962).
Coleman, S. More about the massive Schwinger model. Ann. Phys. 101, 239â267 (1976).
Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659â713 (1979).
Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455â471 (1997).
Kogut, J. B. The lattice gauge theory approach to quantum chromodynamics. Rev. Mod. Phys. 55, 775â836 (1983).
Tong, D. Gauge Theory: Lecture Notes (DAMTP Cambridge, 2018).
Büchler, H. P., Hermele, M., Huber, S. D., Fisher, M. P. A. & Zoller, P. Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005).
Zache, T. V. et al. Dynamical topological transitions in the massive Schwinger model with a θ term. Phys. Rev. Lett. 122, 050403 (2019).
Huang, Y.-P., Banerjee, D. & Heyl, M. Dynamical quantum phase transitions in U(1) quantum link models. Phys. Rev. Lett. 122, 250401 (2019).
Cheng, Y. & Li, C. Gauge theory description of Rydberg atom arrays with a tunable blockade radius. Phys. Rev. B 107, 094302 (2023).
Chepiga, N. & Mila, F. Floating phase versus chiral transition in a 1D hard-boson model. Phys. Rev. Lett. 122, 017205 (2019).
Slagle, K. et al. Microscopic characterization of Ising conformal field theory in Rydberg chains. Phys. Rev. B 104, 235109 (2021).
Slagle, K. et al. Quantum spin liquids bootstrapped from Ising criticality in Rydberg arrays. Phys. Rev. B 106, 115122 (2022).
Verresen, R., Lukin, M. D. & Vishwanath, A. Prediction of toric code topological order from Rydberg blockade. Phys. Rev. X 11, 031005 (2021).
Samajdar, R., Ho, W. W., Pichler, H., Lukin, M. D. & Sachdev, S. Quantum phases of Rydberg atoms on a Kagome lattice. Proc. Natl Acad. Sci. USA 118, e2015785118 (2021).
Giudici, G., Lukin, M. D. & Pichler, H. Dynamical preparation of quantum spin liquids in Rydberg atom arrays. Phys. Rev. Lett. 129, 090401 (2022).
Tarabunga, P. S., Surace, F. M., Andreoni, R., Angelone, A. & Dalmonte, M. Gauge-theoretic origin of Rydberg quantum spin liquids. Phys. Rev. Lett. 129, 195301 (2022).
Giudice, G., Surace, F. M., Pichler, H. & Giudici, G. Trimer states with \({{\mathbb{z}}}_{3}\) topological order in Rydberg atom arrays. Phys. Rev. B 106, 195155 (2022).
Verresen, R. & Vishwanath, A. Unifying Kitaev magnets, Kagome dimer models, and ruby Rydberg spin liquids. Phys. Rev. X 12, 041029 (2022).
Samajdar, R., Joshi, D. G., Teng, Y. & Sachdev, S. Emergent \({{\mathbb{z}}}_{2}\) gauge theories and topological excitations in Rydberg atom arrays. Phys. Rev. Lett. 130, 043601 (2023).
Ohler, S., Kiefer-Emmanouilidis, M. & Fleischhauer, M. Quantum spin liquids of Rydberg excitations in a honeycomb lattice induced by density-dependent Peierls phases. Phys. Rev. Res. 5, 013157 (2023).
Tarabunga, P. S., Giudici, G., Chanda, T. & Dalmonte, M. Classification and emergence of quantum spin liquids in chiral Rydberg models. Phys. Rev. B 108, 075118 (2023).
Sun, B.-Y., Goldman, N., Aidelsburger, M. & Bukov, M. Engineering and probing non-Abelian chiral spin liquids using periodically driven ultracold atoms. PRX Quantum 4, 020329 (2023).
Yan, Z., Wang, Y.-C., Samajdar, R., Sachdev, S. & Meng, Z. Y. Emergent glassy behavior in a Kagome Rydberg atom array. Phys. Rev. Lett. 130, 206501 (2023).
Bauer, N. M., Kokkas, E., Ale, V. & Siopsis, G. Non-Abelian anyons with Rydberg atoms. Phys. Rev. A 107, 062407 (2023).
Sahay, R., Vishwanath, A. & Verresen, R. Quantum spin puddles and lakes: Nisq-era spin liquids from non-equilibrium dynamics. Preprint at https://arxiv.org/abs/2211.01381 (2023).
Guo, S., Huang, J., Hu, J. & Li, Z.-X. Order by disorder and an emergent Kosterlitz-Thouless phase in a triangular Rydberg array. Phys. Rev. A 108, 053314 (2023).
Vafek, O., Regnault, N. & Bernevig, B. A. Entanglement of exact excited eigenstates of the Hubbard model in arbitrary dimension. SciPost Phys. 3, 043 (2017).
Moudgalya, S., Rachel, S., Bernevig, B. A. & Regnault, N. Exact excited states of nonintegrable models. Phys. Rev. B 98, 235155 (2018).
Moudgalya, S., Regnault, N. & Bernevig, B. A. Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis. Phys. Rev. B 98, 235156 (2018).
Choi, S. et al. Emergent SU(2) dynamics and perfect quantum many-body scars. Phys. Rev. Lett. 122, 220603 (2019).
Lin, C.-J. & Motrunich, O. I. Exact quantum many-body scar states in the Rydberg-blockaded atom chain. Phys. Rev. Lett. 122, 173401 (2019).
Schecter, M. & Iadecola, T. Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets. Phys. Rev. Lett. 123, 147201 (2019).
OâDea, N., Burnell, F., Chandran, A. & Khemani, V. From tunnels to towers: quantum scars from Lie algebras and q-deformed Lie algebras. Phys. Rev. Res. 2, 043305 (2020).
Mark, D. K., Lin, C.-J. & Motrunich, O. I. Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models. Phys. Rev. B 101, 195131 (2020).
Mark, D. K. & Motrunich, O. I. η-Pairing states as true scars in an extended Hubbard model. Phys. Rev. B 102, 075132 (2020).
Moudgalya, S., Regnault, N. & Bernevig, B. A. η-Pairing in Hubbard models: from spectrum generating algebras to quantum many-body scars. Phys. Rev. B 102, 085140 (2020).
Moudgalya, S., OâBrien, E., Bernevig, B. A., Fendley, P. & Regnault, N. Large classes of quantum scarred Hamiltonians from matrix product states. Phys. Rev. B 102, 085120 (2020).
Su, G.-X. et al. Observation of many-body scarring in a Bose-Hubbard quantum simulator. Phys. Rev. Res. 5, 023010 (2023).
Vidal, G., Latorre, J. I., Rico, E. & Kitaev, A. Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003).
Calabrese, P. & Cardy, J. Entanglement entropy and quantum field theory. J. Stat. Mech. Theor. Exp. 2004, P06002 (2004).
Yao, Z., Pan, L., Liu, S. & Zhai, H. Quantum many-body scars and quantum criticality. Phys. Rev. B 105, 125123 (2022).
Peng, C. & Cui, X. Bridging quantum many-body scars and quantum integrability in Ising chains with transverse and longitudinal fields. Phys. Rev. B 106, 214311 (2022).
Daniel, A. et al. Bridging quantum criticality via many-body scarring. Phys. Rev. B 107, 235108 (2023).
Yang, C. N. η pairing and off-diagonal long-range order in a Hubbard model. Phys. Rev. Lett. 63, 2144â2147 (1989).
Yang, C. N. & Zhang, S. SO(4) symmetry in a Hubbard model. Mod. Phys. Lett. B 04, 759â766 (1990).
Zhang, S. Pseudospin symmetry and new collective modes of the Hubbard model. Phys. Rev. Lett. 65, 120â122 (1990).
Zohar, E. & Reznik, B. Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. Phys. Rev. Lett. 107, 275301 (2011).
Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).
Muschik, C. et al. U(1) Wilson lattice gauge theories in digital quantum simulators. New J. Phys. 19, 103020 (2017).
Halimeh, J. C., McCulloch, I. P., Yang, B. & Hauke, P. Tuning the topological θ-angle in cold-atom quantum simulators of gauge theories. PRX Quantum 3, 040316 (2022).
Zhang, W.-Y. et al. Observation of microscopic confinement dynamics by a tunable topological θ-angle. Preprint at https://arxiv.org/abs/2306.11794 (2023).
Chepiga, N. & Mila, F. Kibble-Zurek exponent and chiral transition of the period-4 phase of Rydberg chains. Nat. Commun. 12, 414 (2021).
Chepiga, N. & Mila, F. Lifshitz point at commensurate melting of chains of Rydberg atoms. Phys. Rev. Res. 3, 023049 (2021).
Maceira, I. A., Chepiga, N. & Mila, F. Conformal and chiral phase transitions in Rydberg chains. Phys. Rev. Res. 4, 043102 (2022).
Chepiga, N. Tunable quantum criticality in multicomponent Rydberg arrays. Phys. Rev. Lett. 132, 076505 (2024).
Yu, X.-J., Yang, S., Xu, J.-B. & Xu, L. Fidelity susceptibility as a diagnostic of the commensurate-incommensurate transition: a revisit of the programmable Rydberg chain. Phys. Rev. B 106, 165124 (2022).
Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).
Rajput, A., Roggero, A. & Wiebe, N. Quantum error correction with gauge symmetries. npj Quantum Inf. 9, 41 (2023).
Acknowledgements
This work is supported by the Innovation Program for Quantum Science and Technology 2021ZD0302005, the XPLORER Prize, NSFC Grant numbers U23A6004, 12204034 and 12374251, Tsinghua University Initiative Scientific Research Program, and Fundamental Research Funds for the Central Universities (No.FRFTP-22-101A1).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Alejandro Bermúdez, Natalia Chepiga and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheng, Y., Zhai, H. Emergent U(1) lattice gauge theory in Rydberg atom arrays. Nat Rev Phys 6, 566â576 (2024). https://doi.org/10.1038/s42254-024-00749-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-024-00749-6