Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distributed sensing for fluid disturbance compensation and motion control of intelligent robots

Abstract

A control methodology for aerial or aquatic vehicles is presented that leverages intelligent distributed sensing inspired by the lateral line found in fish to directly measure the fluid forces acting on the vehicle. As a result, the complex robot control problem is effectively simplified to that of a rigid body in a vacuum. Furthermore, by sensing these forces, they can be compensated for immediately, rather than after they have displaced the vehicle. We have created a sensory shell around a prototype autonomous underwater vehicle, derived algorithms to remove static pressure and calculate total force from the discrete measurements using a fitting technique that filters sensor error, and validated the control methodology on a vehicle in the presence of multiple fluid disturbances. This sensing control scheme reduces position tracking errors by as much as 72% compared to a standard position error feedback controller.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The lateral line found in fish is composed of two types of specialized sensory organ called neuromasts.
Fig. 2: Photographs of the modular lateral line sensory system and the AUV used in the experimental data collection.
Fig. 3: Images showing individual sensor fabrication and their layout on the vehicle surface.
Fig. 4: The CephaloBot AUV46 with the distributed hydrodynamic sensing system, shown in the vehicle testing tank next to the wave generator used to provide unsteady sway disturbances.
Fig. 5: Vehicle trajectory and position tracking results.

Similar content being viewed by others

Data availability

Any data gathered and reported in this study can be provided by the corresponding author upon request.

References

  1. Bellingham, J. G. & Wilcox, J. S. Optimizing AUV oceanagraphic surveys. In Proc. IEEE/OES Symposium on Autonomous Underwater Vehicle Technology 391–398 (IEEE, 1996).

  2. Whitcomb, L. L., Yoerger, D. R., Singh, H. & Mindell, D. A. Towards precision robotic maneuvering, survey, and manipulation in unstructured undersea environments. In Proc. International Symposium on Robotics Research 45–54 (Springer, 1998).

  3. Yoerger, D. & Slotine, J. J. E. Adaptive sliding control of and experimental underwater vehicle. In Proc. IEEE International Conference on Robotics and Automation (ICRA) 2746–2751 (IEEE, 1991).

  4. Martin, S. C. & Whitcomb, L. L. Fully actuated model-based control with six-degree-of-freedom coupled dynamical plant models for underwater vehicles: theory and experimental evaluation. Int. J. Robot. Res. 35, 1164–1184 (2016).

    Article  Google Scholar 

  5. Liao, J. C. A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. B 362, 1973–1993 (2007).

    Article  Google Scholar 

  6. Blaxter, J. H. S. Structure and development of the lateral line. Biol. Rev. 62, 471–514 (1987).

    Article  Google Scholar 

  7. Pitcher, T. J., Partridge, B. L. & Wardle, C. S. A blind fish can school. Science 194, 963–965 (1976).

    Article  Google Scholar 

  8. Coombs, S. Smart skins: information processing by lateral line sensors. Auton. Robots 11, 225–261 (2001).

    Article  Google Scholar 

  9. Bleckmann, H. Peripheral and central processing of lateral line information. J. Comp. Physiol. A 194, 145–158 (2008).

    Article  Google Scholar 

  10. Montgomery, J. C. & Macdonald, J. A. Sensory tuning of lateral line receptors in Antarctic fish to the movement of planktonic prey. Science 235, 195–196 (1987).

    Article  Google Scholar 

  11. Pohlmann, K., Atema, J. & Breithaupt, T. The importance of the lateral line in nocturnal predation of piscivorous catfish. J. Exp. Biol. 207, 2971–2978 (2004).

    Article  Google Scholar 

  12. Satou, M. et al. Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J. Comp. Physiol. A 174, 539–549 (1994).

    Google Scholar 

  13. Kroese, A. B. A., Van der Zalm, J. M., Van & den Bercken, J. Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch. 375, 167–175 (1978).

    Article  Google Scholar 

  14. Coombs, S. & Montgomery, J. Function and evolution of superficial neuromasts in an Antarctic notothenioid fish. Brain Behav. Evol. 44, 287–298 (1994).

    Article  Google Scholar 

  15. Munz, H. in The Mechanosensory Lateral Line 285–297 (Springer, 1989).

  16. Fan, Z. et al. Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 12, 655–661 (2002).

    Article  Google Scholar 

  17. Kottapalli, A. G. P. et al. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications. J. Micromech. Microeng. 21, 085006 (2011).

    Article  Google Scholar 

  18. Dagamseh, A., Wiegerink, R., Lammerink, T. & Krijnen, G. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors. J. R. Soc. Interface 10, 20130162 (2013).

    Article  Google Scholar 

  19. Abdulsadda, A. T. & Tan, X. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors. Smart Mater. Struct. 22, 045010 (2013).

    Article  Google Scholar 

  20. Fernandez, V. I. et al. Lateral-line-inspired sensor arrays for navigation and object identification. Mar. Technol. Soc. J. 45, 130–146 (2011).

    Article  Google Scholar 

  21. Chambers, L. et al. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow. J. R. Soc. Interface 11, 20140467 (2014).

    Article  Google Scholar 

  22. Ren, Z. & Mohseni, K. A model of the lateral line of fish for vortex sensing. Bioinspir. Biomim. 7, 036016 (2012).

    Article  Google Scholar 

  23. Ren, Z. & Mohseni, K. Wall detection by lateral line sensory system of fish. In Proc. AIAA Aerospace Sciences Meeting 2014-0072 (AIAA, 2014).

  24. Xu, Y. & Mohseni, K. A pressure sensory system inspired by the fish lateral line: hydrodynamic force estimation and wall detection. IEEE J. Ocean. Eng. 42, 532–543 (2016).

    Article  Google Scholar 

  25. Xu, Y. & Mohseni, K. Bio-inspired hydrodynamic force feed forward for autonomous underwater vehicle control. IEEE ASME Trans. Mechatron. 19, 1127–1137 (2014).

    Article  Google Scholar 

  26. Akanyeti, O. et al. Self-motion effects on hydrodynamic pressure sensing: part I. Forward–backward motion. Bioinspir. Biomim. 8, 026001 (2013).

    Article  Google Scholar 

  27. Kottapalli, A. G. P., Asadnia, M., Miao, J. M., Barbastathis, G. & Triantafyllou, M. S. A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing. Smart Mater. Struct. 21, 115030 (2012).

    Article  Google Scholar 

  28. Paley, D. A. & Free, B. A. Model-based observer and feedback control design for a rigid Joukowski foil in a Karman vortex street. Bioinspir. Biomim. 13, 035001 (2018).

    Article  Google Scholar 

  29. Arnold, G. P. Rheotrophism in fishes. Biol. Rev. 49, 515–576 (1974).

    Article  Google Scholar 

  30. Montgomery, J. C., Baker, C. F. & Carton, A. G. The lateral line can mediate rheotaxis in fish. Nature 389, 960–963 (1997).

    Article  Google Scholar 

  31. Nelson, K. & Mohseni, K. Design of a 3-D printed, modular lateral line sensory system for hydrodynamic force estimation. Mar. Technol. Soc. J. 51, 103–115 (2017).

    Article  Google Scholar 

  32. Song, Z., Lipinski, D. & Mohseni, K. Multi-vehicle cooperation and nearly fuel-optimal flock guidance in strong background flows. Ocean Eng. 141, 388–404 (2017).

    Article  Google Scholar 

  33. Song, Z. & Mohseni, K. Long-term inertial navigation aided by dynamics of flow field features. IEEE J. Ocean. Eng. 43, 940–954 (2017).

    Article  Google Scholar 

  34. Fossen, T. I. Guidance and Control of Ocean Vehicles (Wiley, 1994).

  35. Paull, L., Saeedi, S., Seto, M. & Li, H. Auv navigation and localization: a review. IEEE J. Ocean. Eng. 39, 131–149 (2014).

    Article  Google Scholar 

  36. Ruiz, I. T., de Raucourt, S., Petillot, Y. & Lane, D. Concurrent mapping and localization using sidescan sonar. IEEE J. Ocean. Eng. 29, 442–456 (2004).

    Article  Google Scholar 

  37. Eustice, R. M., Singh, H., Leonard, J. J. & Walter, M. R. Visually mapping the RMS titanic: conservative covariance estimates for SLAM information filters. Int. J. Robot. Res. 25, 1223–1242 (2006).

    Article  Google Scholar 

  38. Krieg, M. & Mohseni, K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion. IEEE Trans. Robot. 26, 542–554 (2010).

    Article  Google Scholar 

  39. Antonelli, G., Caccavale, F., Chiaverini, S. & Villani, L. Tracking control for underwater vehicle-manipulator systems with velocity estimation. IEEE J. Ocean. Eng. 25, 399–413 (2000).

    Article  Google Scholar 

  40. Yoerger, D. & Slotine, J. Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. 10, 462–470 (1985).

    Article  Google Scholar 

  41. Healey, A. J. & Lienard, D. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18, 327–339 (1993).

    Article  Google Scholar 

  42. Yuh, J. Modeling and control of underwater robotic vehicles. IEEE Trans. Syst. Man Cybern. 20, 1475–1483 (1990).

    Article  Google Scholar 

  43. Marco, D. B. & Healey, A. J. Local area navigation using sonar feature extraction and model-based predictive control. Int. J. Syst. Sci. 29, 1123–1133 (1998).

    Article  Google Scholar 

  44. Kim, T. W. & Yuh, J. A novel neuro-fuzzy controller for autonomous underwater vehicles. In Proc. International Conference on Robotics and Automation 2350–2355 (IEEE, 2001).

  45. Walters, P., Kamalapurkar, R., Voight, F., Schwartz, E. M. & Dixon, W. E. Online approximate optimal station keeping of a marine craft in the presence of an irrotational current. IEEE Trans. Robot. 34, 486–496 (2018).

    Article  Google Scholar 

  46. Krieg, M., Klein, P., Hodgkinson, R. & Mohseni, K. A hybrid class underwater vehicle: bioinspired propulsion, embedded system, and acoustic communication and localization system. Mar. Technol. Soc. J. Spec. Ed. Biomim. Mar. Technol. 45, 153–164 (2011).

    Article  Google Scholar 

  47. Krieg, M., Nelson, K., Eisele, J. & Mohseni, K. Bioinspired jet propulsion for disturbance rejection of marine robots. IEEE Robot. Autom. Lett. 3, 2378–2385 (2018).

    Article  Google Scholar 

  48. Krieg, M. & Mohseni, K. Thrust characterization of pulsatile vortex ring generators for locomotion of underwater robots. IEEE J. Ocean. Eng. 33, 123–132 (2008).

    Article  Google Scholar 

  49. Krieg, M. & Mohseni, K. Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity. J. Fluid Mech. 719, 488–526 (2013).

    Article  Google Scholar 

  50. Krieg, M. & Mohseni, K. Pressure and work analysis of unsteady, deformable, axisymmetric, jet producing cavity bodies. J. Fluid Mech. 769, 337–368 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research (ONR) and the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Contributions

M.K. helped design the prototype AUV and derived the force-processing algorithms. K.N. was responsible for all stages of system testing and helped design and validate the custom modular distributed pressure sensory system. K.M. supervised and provided advice for the entire research project, and helped edit and write the paper.

Corresponding author

Correspondence to Kamran Mohseni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Figures, Discussion, Methods, References

Supplementary Video

Experiment with AUV in water tank

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krieg, M., Nelson, K. & Mohseni, K. Distributed sensing for fluid disturbance compensation and motion control of intelligent robots. Nat Mach Intell 1, 216–224 (2019). https://doi.org/10.1038/s42256-019-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-019-0044-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing