There is a continuing demand for high-quality, large-scale annotated datasets in medical imaging supported by machine learning. A new study investigates the importance of what type of instructions crowdsourced annotators receive.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Feng, R. et al. IEEE Trans. Med. Imaging 40, 2575â2588 (2021).
Tan, J. et al. Med. Image Comput. Comput. Assist. Interv. (eds de Bruijne, M. et al.) 581â591 (2021).
Rädsch, T. et al. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00625-5 (2023).
Kristiansen, T. B., Kristensen, K., Uffelmann, J. & Brandslund, I. Front. Digit. Heal. https://doi.org/10.3389/fdgth.2022.862095 (2022).
Rajchl, M. et al. IEEE Trans. Med. Imaging 36, 674â683 (2017).
Budd, S.et al. Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health (eds Albarqouni, S. et al). 251â262 (2021).
Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. 2022 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 10674â10685 (2022).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Day, T.G., Simpson, J.M., Razavi, R. et al. Improving image labelling quality. Nat Mach Intell 5, 335â336 (2023). https://doi.org/10.1038/s42256-023-00645-1
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-023-00645-1