Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of nanotechnology in plant genetic engineering

Abstract

Genetic engineering to improve the capabilities of plants is essential given climate change and population growth pressures. Current manipulation methods are laborious and species dependent, which limits advances in agriculture and molecular farming. Therefore, new approaches and tools are needed to broaden the range of transformable species and increase the throughput at which transformation is achieved. Nanotechnology has revolutionized delivery, sensing and imaging in microbial and animal systems, but its application in plants remains scant. However, reports of nano-mediated delivery for the genetic manipulation of plants have emerged, including direct germline editing as well as plastid and mitochondrial genome modification. Here, we review the application of nanotechnology to plant genetic manipulation, including the development of nanocarriers for the delivery of genetic cargos and advances in nano-mediated plant regeneration. Particular focus is given to understanding structure–function relationships for the rational design of nanocarriers, and how these developments can catalyse progress in nucleic acid and protein delivery for plant biotechnology applications.

Key points

  • Population growth and climate change pose serious challenges to plant-based systems, requiring improvement through genetic manipulation to ensure their maintenance.

  • Current manipulation methods are amenable to a limited range of species and with low throughput. Nanotechnology-based strategies could overcome these limitations.

  • Advances in understanding nanomaterial structure–function relationships enable the development of first-principle models of the cellular fate of carriers and design heuristics related to size, charge and shape.

  • Nanotechnology-mediated delivery of site-specific nucleases and large cargos, such as transcription factors, is a promising strategy to improve the efficiency of genetic manipulation in plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological delivery barriers.
Fig. 2: Tuneable parameters for NP design.
Fig. 3: Nano-mediated transformation of plants.

Similar content being viewed by others

References

  1. Cunningham, F. J., Goh, N. S., Demirer, G. S., Matos, J. L. & Landry, M. P. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.03.009 (2018).

    Article  Google Scholar 

  2. Buyel, J. F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv. 36, 506–520 (2018).

    Article  Google Scholar 

  3. Chung, Y. H. et al. Integrating plant molecular farming and materials research for next-generation vaccines. Nat. Rev. Mater. 7, 372–388 (2022).

    Article  Google Scholar 

  4. Waring, B. et al. Forests and decarbonization — roles of natural and planted forests. Front. For. Global Change 3, 58 (2020).

    Article  Google Scholar 

  5. Dasgupta, S. & Robinson, E. J. Z. Attributing changes in food insecurity to a changing climate. Sci. Rep. 12, 4709 (2022).

    Article  Google Scholar 

  6. FAO. The State of Food Security and Nutrition in the World 2022 (FAO, 2022).

  7. Fischer, R. & Buyel, J. F. Molecular farming — the slope of enlightenment. Biotechnol. Adv. 40, 107519 (2020).

    Article  Google Scholar 

  8. Schillberg, S. & Finnern, R. Plant molecular farming for the production of valuable proteins - critical evaluation of achievements and future challenges. J. Plant Physiol. 258–259, 153359 (2021).

    Article  Google Scholar 

  9. Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Chang. https://doi.org/10.1038/s41558-022-01426-1 (2022).

    Article  Google Scholar 

  10. Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    Article  Google Scholar 

  11. Breseghello, F. & Coelho, A. S. G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agric. Food Chem. 61, 8277–8286 (2013).

    Article  Google Scholar 

  12. Bevan, M. Binary agrobacterium vectors for plant transformation. Nucleic Acids Res. https://doi.org/10.1093/nar/12.22.8711 (1984).

    Article  Google Scholar 

  13. Klein, T. M., Wolf, E. D., Wu, R. & Sanford, J. C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327, 70–73 (1987).

    Article  Google Scholar 

  14. McNulty, M. J. et al. Molecular pharming to support human life on the moon, mars, and beyond. Crit. Rev. Biotechnol. 41, 849–864 (2021).

    Article  Google Scholar 

  15. Ku, H.-K. & Ha, S.-H. Improving nutritional and functional quality by genome editing of crops: status and perspectives. Front. Plant Sci. 11, 577313 (2020).

    Article  Google Scholar 

  16. Sanzari, I., Leone, A. & Ambrosone, A. Nanotechnology in plant science: to make a long story short. Front. Bioeng. Biotechnol. 7, 120 (2019).

    Article  Google Scholar 

  17. Buschmann, M. D. et al. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021).

    Article  Google Scholar 

  18. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  19. Willner, M. R. & Vikesland, P. J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 16, 95 (2018).

    Article  Google Scholar 

  20. Li, H., Merkl, P., Sommertune, J., Thersleff, T. & Sotiriou, G. A. SERS Hotspot engineering by aerosol self‐assembly of plasmonic Ag nanoaggregates with tunable interparticle distance. Adv. Sci. 9, 2201133 (2022).

    Article  Google Scholar 

  21. El-Shetehy, M. et al. Silica nanoparticles enhance disease resistance in arabidopsis plants. Nat. Nanotechnol. https://doi.org/10.1038/s41565-020-00812-0 (2020).

    Article  Google Scholar 

  22. Zarattini, M. et al. LPMO-Oxidized cellulose oligosaccharides evoke immunity in arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Commun. Biol. 4, 727 (2021).

    Article  Google Scholar 

  23. Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    Article  Google Scholar 

  24. Kwak, S.-Y. et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).

    Article  Google Scholar 

  25. Odahara, M. et al. Nanoscale polyion complex vesicles for delivery of cargo proteins and Cas9 ribonucleoprotein complexes to plant cells. ACS Appl. Nano Mater 4, 5630–5635 (2021).

    Article  Google Scholar 

  26. Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A. & Zheng, W. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiol 184, 647–657 (2020).

    Article  Google Scholar 

  27. Zhang, H. et al. Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nat. Nanotechnol. 17, 197–205 (2022).

    Article  Google Scholar 

  28. Krens, F. A., Molendijk, L., Wullems, G. J. & Schilperoort, R. A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296, 72–74 (1982).

    Article  Google Scholar 

  29. Burnett, M. J. B. & Burnett, A. C. Therapeutic recombinant protein production in plants: challenges and opportunities. Plants People Planet 2, 121–132 (2020).

    Article  Google Scholar 

  30. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V. & Gleba, Y. Systemic agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 23, 718–723 (2005).

    Article  Google Scholar 

  31. Niazian, M., Sadat Noori, S. A., Galuszka, P. & Mortazavian, S. M. M. Tissue culture-based agrobacterium-mediated and in planta transformation methods. Czech J. Genet. Plant Breed 53, 133–143 (2017).

    Article  Google Scholar 

  32. Nyaboga, E., Tripathi, J. N., Manoharan, R. & Tripathi, L. Agrobacterium-mediated genetic transformation of Yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement. Front. Plant Sci. 5, 463 (2014).

    Article  Google Scholar 

  33. Song, G., Prieto, H. & Orbovic, V. Agrobacterium-mediated transformation of tree fruit crops: methods, progress, and challenges. Front. Plant Sci. 10, 226 (2019).

    Article  Google Scholar 

  34. Gelvin, S. B. Integration of agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 51, 195–217 (2017).

    Article  Google Scholar 

  35. Lowe, K. et al. Morphogenic regulators Baby Boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    Article  Google Scholar 

  36. Kong, J. et al. Overexpression of the transcription factor growth-regulating factor5 improves transformation of dicot and monocot species. Front. Plant Sci. 11, 572319 (2020).

    Article  Google Scholar 

  37. Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X. & Armstrong, C. L. Factors influencing agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol. Plant 40, 31–45 (2004).

    Article  Google Scholar 

  38. Tie, W. et al. Reasons for lower transformation efficiency in Indica rice using agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling. Plant Mol. Biol. 78, 1–18 (2012).

    Article  Google Scholar 

  39. De Saeger, J. et al. Agrobacterium strains and strain improvement: present and outlook. Biotechnol. Adv. 53, 107677 (2021).

    Article  Google Scholar 

  40. Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406 (2019).

    Article  Google Scholar 

  41. Lian, Z. et al. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol. J. 20, 1622–1635 (2022).

    Article  Google Scholar 

  42. Singh, R. K. & Prasad, M. Advances in agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma 253, 691–707 (2016).

    Article  Google Scholar 

  43. Boynton, J. E. et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538 (1988).

    Article  Google Scholar 

  44. Liu, J. et al. Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31, 368–383 (2019).

    Article  Google Scholar 

  45. Ahmad, N., Michoux, F., Lössl, A. G. & Nixon, P. J. Challenges and perspectives in commercializing plastid transformation technology. J. Expt. Bot. 67, 5945–5960 (2016).

    Article  Google Scholar 

  46. Burris, K. P., Dlugosz, E. M., Collins, A. G., Stewart, C. N. & Lenaghan, S. C. Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep. 35, 693–704 (2016).

    Article  Google Scholar 

  47. Vanitharani, R., Chellappan, P. & Fauquet, C. M. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc. Natl Acad. Sci. USA 100, 9632–9636 (2003).

    Article  Google Scholar 

  48. Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    Article  Google Scholar 

  49. Kang, B.-C. et al. Chloroplast and mitochondrial DNA editing in plants. Nat. Plants 7, 899–905 (2021).

    Article  Google Scholar 

  50. Reed, K. M. & Bargmann, B. O. R. Protoplast regeneration and its use in new plant breeding technologies. Front. Genome Ed. 3, 734951 (2021).

    Article  Google Scholar 

  51. Altpeter, F. et al. Advancing crop transformation in the era of genome editing. Plant Cell https://doi.org/10.1105/tpc.16.00196 (2016).

    Article  Google Scholar 

  52. Anjanappa, R. B. & Gruissem, W. Current progress and challenges in crop genetic transformation. J. Plant Physiol. 261, 153411 (2021).

    Article  Google Scholar 

  53. Leva, A. & Rinaldi, L. (eds) Recent Advances in Plant in Vitro Culture (IntechOpen, 2012).

  54. George, E. F., Hall, M. A. & Klerk, G.-J. D. Plant Propagation by Tissue Culture: Volume 1. The Background (Springer Science & Business Media, 2007).

  55. Vasil, I. K. & Vasil, V. Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8, 117–125 (1972).

    Article  Google Scholar 

  56. Altpeter, F. et al. Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breeding 15, 305–327 (2005).

    Article  Google Scholar 

  57. Gao, C. Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635 (2021).

    Article  Google Scholar 

  58. Saha, P. & Blumwald, E. Spike‐dip transformation of Setaria Viridis. Plant J. 86, 89–101 (2016).

    Article  Google Scholar 

  59. Soman, J., Hema, J. & Subramanian, S. In Advances in Plant Transgenics: Methods and Applications (eds Sathishkumar, R., Kumar, S. R., Hema, J. & Baskar, V.) 3–22 (Springer Singapore, 2019).

  60. Thorpe, T. A. History of plant tissue culture. Mol. Biotechnol. 37, 169–180 (2007).

    Article  Google Scholar 

  61. Erland, L. A. E., Shukla, M. R., Glover, W. B. & Saxena, P. K. A simple and efficient method for analysis of plant growth regulators: a new tool in the chest to combat recalcitrance in plant tissue culture. Plant Cell Tiss. Organ Cult. 131, 459–470 (2017).

    Article  Google Scholar 

  62. Kothari, S. L., Joshi, A., Kachhwaha, S. & Ochoa-Alejo, N. Chilli peppers — a review on tissue culture and transgenesis. Biotechnol. Adv. 28, 35–48 (2010).

    Article  Google Scholar 

  63. Yaqoob, U., Kaul, T. & Nawchoo, I. A. In vitro plant regeneration of some recalcitrant Indica rice (Oryza sativa L.) varieties. Vegetos 34, 102–106 (2021).

    Article  Google Scholar 

  64. Han, Y., Jin, X., Wu, F. & Zhang, G. Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). J. Zhejiang Univ. Sci. B 12, 399–407 (2011).

    Article  Google Scholar 

  65. Che, P. et al. Developing a flexible, high-efficiency agrobacterium-mediated Sorghum transformation system with broad application. Plant Biotechnol. J. 16, 1388–1395 (2018).

    Article  Google Scholar 

  66. Azhakanandam, K. & Zhang, Z. J. In Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants (eds Azhakanandam, K., Silverstone, A., Daniell, H. & Davey, M. R.) 291–312 (Springer, 2015).

  67. Nguyen, T.-V., Thanh Thu, T., Claeys, M. & Angenon, G. Agrobacterium-mediated transformation of Sorghum (Sorghum bicolor (L.) moench) using an improved in vitro regeneration system. Plant Cell Tiss. Organ. Cult 91, 155–164 (2007).

    Article  Google Scholar 

  68. Casas, A. M. et al. Transgenic Sorghum plants via microprojectile bombardment. Proc. Natl Acad. Sci. USA 90, 11212–11216 (1993).

    Article  Google Scholar 

  69. Zhao, Z. et al. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798 (2000).

    Article  Google Scholar 

  70. Liu, G. & Godwin, I. D. Highly efficient sorghum transformation. Plant Cell Rep. 31, 999–1007 (2012).

    Article  Google Scholar 

  71. Wu, E. et al. Optimized agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell. Dev. Biol. Plant 50, 9–18 (2014).

    Article  Google Scholar 

  72. Fus-Kujawa, A. et al. An overview of methods and tools for transfection of eukaryotic cells in vitro. Front. Bioeng. Biotechnol. 9, 701031 (2021).

    Article  Google Scholar 

  73. Joersbo, M. & Brunstedt, J. In Electrical Manipulation of Cells (eds Lynch, P. T. & Davey, M. R.) 201–222 (Springer, 1996).

  74. Neuhaus, G. & Spangenberg, G. Plant transformation by microinjection techniques. Physiol. Plant 79, 213–217 (1990).

    Article  Google Scholar 

  75. Trick, H. N. & Finer, J. J. SAAT: sonication-assisted agrobacterium-mediated transformation. Transgenic Res. 6, 329–336 (1997).

    Article  Google Scholar 

  76. Azencott, H. R., Peter, G. F. & Prausnitz, M. R. Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. Ultrasound Med. Biol. https://doi.org/10.1016/j.ultrasmedbio.2007.05.008 (2007).

    Article  Google Scholar 

  77. Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article  Google Scholar 

  78. Li, C. et al. Recent progress in drug delivery. Acta Pharm. Sin. B 9, 1145–1162 (2019).

    Article  Google Scholar 

  79. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-020-0075-7 (2020).

    Article  Google Scholar 

  80. Zhang, Q., Ying, Y. & Ping, J. Recent advances in plant nanoscience. Adv. Sci. https://doi.org/10.1002/advs.202103414 (2022).

    Article  Google Scholar 

  81. Mujtaba, M. et al. Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-Cas for plant protection: current trends and future directions. ACS Agric. Sci. Technol. https://doi.org/10.1021/acsagscitech.1c00146 (2021).

    Article  Google Scholar 

  82. Wu, H., Santana, I., Dansie, J. & Giraldo, J. P. In vivo delivery of nanoparticles into plant leaves: delivery of nanoparticles into plant leaves. Curr. Protoc. Chem. Biol. 9, 269–284 (2017).

    Article  Google Scholar 

  83. Dong, X. Current strategies for brain drug delivery. Theranostics 8, 1481–1493 (2018).

    Article  Google Scholar 

  84. Cosgrove, D. J. Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 13, 171–201 (1997).

    Article  Google Scholar 

  85. Wang, P., Lombi, E., Zhao, F. J. & Kopittke, P. M. Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2016.04.005 (2016).

    Article  Google Scholar 

  86. Seelig, A., Gottschlich, R. & Devant, R. M. A method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc. Natl Acad. Sci. USA 91, 68–72 (1994).

    Article  Google Scholar 

  87. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    Article  Google Scholar 

  88. Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. https://doi.org/10.1038/nbt.2614 (2013).

    Article  Google Scholar 

  89. Rajput, V. et al. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 65, 137–143 (2020).

    Article  Google Scholar 

  90. Basha, G. et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol. Ther. https://doi.org/10.1038/mt.2011.190 (2011).

    Article  Google Scholar 

  91. Zinger, A. et al. Enhancing inflammation targeting using tunable leukocyte-based biomimetic nanoparticles. ACS Nano 15, 6326–6339 (2021).

    Article  Google Scholar 

  92. Guo, B. et al. Native protein delivery into rice callus using ionic complexes of protein and cell-penetrating peptides. PLoS ONE 14, e0214033 (2019).

    Article  Google Scholar 

  93. Zhao, X. et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nature Plants https://doi.org/10.1038/s41477-017-0063-z (2017).

    Article  Google Scholar 

  94. Wang, Z. et al. Efficient and genotype independent maize transformation using pollen transfected by DNA‐coated magnetic nanoparticles. JIPB 64, 1145–1156 (2022).

    Article  Google Scholar 

  95. Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).

    Article  Google Scholar 

  96. Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    Article  Google Scholar 

  97. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, 1802086 (2018).

    Article  Google Scholar 

  98. Su, Y. et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environ. Sci. Nano 6, 2311–2331 (2019).

    Article  Google Scholar 

  99. Murali, M. et al. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: current challenges and future prospects. Sci. Total Environ. 811, 152249 (2022).

    Article  Google Scholar 

  100. Marmiroli, M. et al. Copper oxide nanomaterial fate in plant tissue: nanoscale impacts on reproductive tissues. Environ. Sci. Technol. 55, 10769–10783 (2021).

    Article  Google Scholar 

  101. Milewska-Hendel, A., Zubko, M., Karcz, J., Stróż, D. & Kurczyńska, E. Fate of neutral-charged gold nanoparticles in the roots of the hordeum Vulgare L. Cultivar Karat. Sci. Rep. 7, 3014 (2017).

    Article  Google Scholar 

  102. Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    Article  Google Scholar 

  103. Yoshizumi, T., Oikawa, K., Chuah, J.-A., Kodama, Y. & Numata, K. Selective gene delivery for integrating exogenous DNA into plastid and mitochondrial genomes using peptide–DNA complexes. Biomacromolecules 19, 1582–1591 (2018).

    Article  Google Scholar 

  104. Liu, W. et al. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/GRNA ribonucleoprotein into plant cells. Plant Cell Rep. 39, 245–257 (2020).

    Article  Google Scholar 

  105. Silva, A. T., Nguyen, A., Ye, C., Verchot, J. & Moon, J. H. Conjugated polymer nanoparticles for effective SiRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biol. 10, 291 (2010).

    Article  Google Scholar 

  106. Liu, Q. et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 9, 1007–1010 (2009).

    Article  Google Scholar 

  107. Ali, Z. et al. DNA–carbon nanotube binding mode determines the efficiency of carbon nanotube-mediated DNA delivery to intact plants. ACS Appl. Nano Mater 5, 4663–4676 (2022).

    Article  Google Scholar 

  108. González-Grandío, E. et al. Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J. Nanobiotechnol. 19, 431 (2021).

    Article  Google Scholar 

  109. Lévy, R., Shaheen, U., Cesbron, Y. & Sée, V. Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev. 1, 4889 (2010).

    Article  Google Scholar 

  110. Ding, Y. et al. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22, 1075–1083 (2014).

    Article  Google Scholar 

  111. Vijayakumar, P. S., Abhilash, O. U., Khan, B. M. & Prasad, B. L. V. Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv. Funct. Mater. 20, 2416–2423 (2010).

    Article  Google Scholar 

  112. Lei, W.-X. et al. Construction of gold-SiRNA NPR1 nanoparticles for effective and quick silencing of NPR1 in Arabidopsis thaliana. RSC Adv. 10, 19300–19308 (2020).

    Article  Google Scholar 

  113. Zhang, H. et al. Gold-nanocluster-mediated delivery of SiRNA to intact plant cells for efficient gene knockdown. Nano Lett. 21, 5859–5866 (2021).

    Article  Google Scholar 

  114. Huang, C., Zhang, Y., Yuan, H., Gao, H. & Zhang, S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett. 13, 4546–4550 (2013).

    Article  Google Scholar 

  115. Yu, M. et al. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett 16, 7176–7182 (2016).

    Article  Google Scholar 

  116. Vejlupkova, Z. et al. No evidence for transient transformation via pollen magnetofection in several monocot species. Nat. Plants 6, 1323–1324 (2020).

    Article  Google Scholar 

  117. Vercoulen, P. H. W., Roos, R. A., Marijnissen, J. C. M. & Scarlett, B. Measuring electric charge on pollen. J. Aerosol Sci. 23, 377–380 (1992).

    Article  Google Scholar 

  118. Kneuer, C. et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem 11, 926–932 (2000).

    Article  Google Scholar 

  119. Radu, D. R. et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126, 13216–13217 (2004).

    Article  Google Scholar 

  120. Bharali, D. J. et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl Acad. Sci. USA 102, 11539–11544 (2005).

    Article  Google Scholar 

  121. Torney, F., Trewyn, B. G., Lin, V. S.-Y. & Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotech. 2, 295–300 (2007).

    Article  Google Scholar 

  122. Martin-Ortigosa, S. et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via LoxP site excision. Plant Physiol 164, 537–547 (2014).

    Article  Google Scholar 

  123. Mahmoud, L. M., Kaur, P., Stanton, D., Grosser, J. W. & Dutt, M. A cationic lipid mediated CRISPR/Cas9 technique for the production of stable genome edited citrus plants. Plant Methods 18, 33 (2022).

    Article  Google Scholar 

  124. Karny, A., Zinger, A., Kajal, A., Shainsky-Roitman, J. & Schroeder, A. Therapeutic nanoparticles penetrate leaves and deliver nutrients to agricultural crops. Sci. Rep. 8, 7589 (2018).

    Article  Google Scholar 

  125. Cai, Q. et al. Message in a bubble: shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annu. Rev. Plant Biol. 72, 497–524 (2021).

    Article  Google Scholar 

  126. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  Google Scholar 

  127. Shan, S., Soltis, P. S., Soltis, D. E. & Yang, B. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Appl. Plant Sci. https://doi.org/10.1002/aps3.11314 (2020).

    Article  Google Scholar 

  128. Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G. & Kamoun, S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693 (2013).

    Article  Google Scholar 

  129. Yuan, M. et al. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 19, 24 (2019).

    Article  Google Scholar 

  130. Upadhyay, S. K., Kumar, J., Alok, A. & Tuli, R. RNA-guided genome editing for target gene mutations in wheat. G3 3, 2233–2238 (2013).

    Article  Google Scholar 

  131. Kaur, N. et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genomics 18, 89–99 (2018).

    Article  Google Scholar 

  132. Peng, A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519 (2017).

    Article  Google Scholar 

  133. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    Article  Google Scholar 

  134. Hamada, H. et al. Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat. Sci. Rep. 8, 14422 (2018).

    Article  Google Scholar 

  135. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018).

    Article  Google Scholar 

  136. Gangopadhyay, S. A. et al. Precision control of CRISPR-Cas9 using small molecules and light. Biochemistry 58, 234–244 (2019).

    Article  Google Scholar 

  137. Harrington, L. B. et al. A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8, 1424 (2017).

    Article  Google Scholar 

  138. Wang, J. W., Goh, N., Lien, E., González-Grandío, E. & Landry, M. P. Quantification of cell penetrating peptide mediated delivery of proteins in plant leaves. Preprint at bioRxiv https://doi.org/10.1101/2022.05.03.490515 (2022).

    Article  Google Scholar 

  139. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  Google Scholar 

  140. Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    Article  Google Scholar 

  141. Clasen, B. M. et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 14, 169–176 (2016).

    Article  Google Scholar 

  142. Lor, V. S., Starker, C. G., Voytas, D. F., Weiss, D. & Olszewski, N. E. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol. 166, 1288–1291 (2014).

    Article  Google Scholar 

  143. Li, T., Liu, B., Chen, C. Y. & Yang, B. TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J. Genet. Genomics 43, 297–305 (2016).

    Article  Google Scholar 

  144. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    Article  Google Scholar 

  145. Luo, S. et al. Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol. Plant 8, 1425–1427 (2015).

    Article  Google Scholar 

  146. Zhao, X. Y., Su, Y. H., Cheng, Z. J. & Zhang, X. S. Cell fate switch during in vitro plant organogenesis. J. Integr. Plant Biol. 50, 816–824 (2008).

    Article  Google Scholar 

  147. An, C. et al. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J. Nanobiotechnol. 20, 11 (2022).

    Article  Google Scholar 

  148. Pereira, A. E. S., Silva, P. M., Oliveira, J. L., Oliveira, H. C. & Fraceto, L. F. Chitosan nanoparticles as carrier systems for the plant growth hormone Gibberellic acid. Colloids Surf. B Biointerfaces 150, 141–152 (2017).

    Article  Google Scholar 

  149. Li, X. et al. A triple-stimuli responsive hormone delivery system equipped with pillararene magnetic nanovalves. Mater. Chem. Front. 3, 103–110 (2019).

    Article  Google Scholar 

  150. Kokina, I. et al. Target transportation of auxin on mesoporous Au/SiO2 nanoparticles as a method for somaclonal variation increasing in flax (L. Usitatissimum L.). J. Nanomater. 2017, e7143269 (2017).

    Article  Google Scholar 

  151. Hwan Kim, D., Gopal, J. & Sivanesan, I. Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv. 7, 36492–36505 (2017).

    Article  Google Scholar 

  152. Lowe, K. et al. Rapid genotype “Independent” Zea Mays L. (Maize) transformation via direct somatic embryogenesis. In Vitro Cell. Dev. Biol. Plant 54, 240–252 (2018).

    Article  Google Scholar 

  153. Bouchabké-Coussa, O. et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. 32, 675–686 (2013).

    Article  Google Scholar 

  154. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    Article  Google Scholar 

  155. Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274–1279 (2020).

    Article  Google Scholar 

  156. Liu, Y. et al. Delivery of intact transcription factor by using self-assembled supramolecular nanoparticles. Angew. Chem. Int. Ed. 123, 3114–3118 (2011).

    Article  Google Scholar 

  157. Patel, S. et al. NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 8, 8959–8967 (2014).

    Article  Google Scholar 

  158. Rissanen, T. H. et al. Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. J. Nutr. 133, 199–204 (2003).

    Article  Google Scholar 

  159. Malik, K. A. & Maqbool, A. Transgenic crops for biofortification. Front. Sustain. Food Syst. 4, 571402 (2020).

    Article  Google Scholar 

  160. Blando, F. et al. Nutraceutical characterization of anthocyanin-rich fruits produced by “Sun black” tomato line. Front. Nutr. 6, 133 (2019).

    Article  Google Scholar 

  161. Butelli, E. et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308 (2008).

    Article  Google Scholar 

  162. Nonaka, S., Arai, C., Takayama, M., Matsukura, C. & Ezura, H. Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 7, 7057 (2017).

    Article  Google Scholar 

  163. Ye, X. et al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000).

    Article  Google Scholar 

  164. Paine, J. A. et al. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487 (2005).

    Article  Google Scholar 

  165. Tian, Y.-S. et al. Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering. Plant Biotechnol. J. 17, 849–851 (2019).

    Article  Google Scholar 

  166. Qu, Y. et al. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc. Natl Acad. Sci. 115, 3180–3185 (2018).

    Article  Google Scholar 

  167. Caputi, L. et al. Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar Periwinkle. Science 360, 1235–1239 (2018).

    Article  Google Scholar 

  168. Onda, Y. & Mochida, K. Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr. Genomics 17, 358–367 (2016).

    Article  Google Scholar 

  169. Santos, R. B., Abranches, R., Fischer, R., Sack, M. & Holland, T. Putting the spotlight back on plant suspension cultures. Front. Plant Sci. 7, 297 (2016).

    Article  Google Scholar 

  170. Schillberg, S., Raven, N., Fischer, R., Twyman, R. M. & Schiermeyer, A. Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr. Pharm. Des. 19, 5531–5542 (2013).

    Article  Google Scholar 

  171. Lawson, C. E. et al. Machine learning for metabolic engineering: a review. Metab. Eng. 63, 34–60 (2021).

    Article  Google Scholar 

  172. Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1817074116 (2019).

    Article  Google Scholar 

  173. Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl Acad. Sci. USA 119, e2115865119 (2022).

    Article  Google Scholar 

  174. Demirer, G. S. et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. Sci. Adv. 6, eaaz0495 (2020).

    Article  Google Scholar 

  175. Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).

    Article  Google Scholar 

  176. Jönsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1633–1638 (2006).

    Article  Google Scholar 

  177. Zhang, T. et al. Phyllotactic patterning of gerbera flower heads. Proc. Natl Acad. Sci. USA 118, e2016304118 (2021).

    Article  Google Scholar 

  178. Kuzma, J. Nanotechnology oversight and regulation — just do it. Environ. Law Rev. 36, 10913–10923 (2006).

    Google Scholar 

  179. Subramanian, K. S. & Rajkishore, S. K. in Nanomaterials: Ecotoxicity, Safety, and Public Perception (eds. Rai, M. & Biswas, J. K.) 319–342 (Springer International Publishing, 2018).

  180. Landry, M. P. & Mitter, N. How nanocarriers delivering cargos in plants can change the GMO landscape. Nat. Nanotechnol. 14, 512–514 (2019).

    Article  Google Scholar 

  181. Santana, I. et al. Targeted carbon nanostructures for chemical and gene delivery to plant chloroplasts. ACS Nano 16, 12156–12173 (2022).

    Article  Google Scholar 

  182. Martin-Ortigosa, S. et al. Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8, 413–422 (2012).

    Article  Google Scholar 

  183. Hahn, S., Giritch, A., Bartels, D., Bortesi, L. & Gleba, Y. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants. Plant Biotechnol. J. 13, 708–716 (2015).

    Article  Google Scholar 

  184. Stadler, R. et al. Expression of GFP-fusions in arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel post-phloem domain in roots: protein trafficking in the phloem. Plant J. 41, 319–331 (2004).

    Article  Google Scholar 

  185. Zhang, Y., Klepsch, M. & Jansen, S. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates: bordered pits in xylem of vesselless angiosperms. Plant Cell Environ. 40, 2133–2146 (2017).

    Article  Google Scholar 

  186. Zhu, Z.-J. et al. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46, 12391–12398 (2012).

    Article  Google Scholar 

  187. Contento, A. L. & Bassham, D. C. Structure and function of endosomes in plant cells. J. Cell Sci. 125, 3511–3518 (2012).

    Article  Google Scholar 

  188. Block, M. A., Douce, R., Joyard, J. & Rolland, N. Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth. Res. 92, 225–244 (2007).

    Article  Google Scholar 

  189. Murcha, M. W. et al. Protein import into plant mitochondria: signals, machinery, processing, and regulation. J. Exp. Bot. 65, 6301–6335 (2014).

    Article  Google Scholar 

  190. Li, S., Chang, L. & Zhang, J. Advancing organelle genome transformation and editing for crop improvement. Plant Commun. 2, 100141 (2021).

    Article  Google Scholar 

  191. Oey, M., Lohse, M., Kreikemeyer, B. & Bock, R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 57, 436–445 (2009).

    Article  Google Scholar 

  192. Remacle, C., Cardol, P., Coosemans, N., Gaisne, M. & Bonnefoy, N. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc. Natl Acad. Sci. USA 103, 4771–4776 (2006).

    Article  Google Scholar 

  193. Turnbull, C., Lillemo, M. & Hvoslef-Eide, T. A. K. Global regulation of genetically modified crops amid the gene edited crop boom — a review. Front. Plant Sci. 12, 630396 (2021).

    Article  Google Scholar 

  194. ISAAA Inc. ISAAA Brief 55-2019; https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp (2020).

  195. Potrykus, I. Regulation must be revolutionized. Nature 466, 561–561 (2010).

    Article  Google Scholar 

  196. Wu, F. et al. Allow golden rice to save lives. Proc. Natl Acad. Sci. USA 118, e2120901118 (2021).

    Article  Google Scholar 

  197. Paarlberg, R. A dubious success: the NGO campaign against GMOs. GM Crops Food 5, 223–228 (2014).

    Article  Google Scholar 

  198. Hudson, M. et al. Indigenous perspectives and gene editing in Aotearoa New Zealand. Front. Bioeng. Biotechnol. 7, 70 (2019).

    Article  Google Scholar 

  199. Rock, J. & Schurman, R. The complex choreography of agricultural biotechnology in Africa. Afr. Aff. 119, 499–525 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

Co-lead authors contributed equally to this work and may revise the order of authorship when presenting this work. M.P.L. is a Chan-Zuckerberg Biohub investigator, a Hellen Wills Neuroscience Institute Investigator, and an IGI Investigator. H.J.S. and E.V. were supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

H.J.S. and S.T. contributed equally in leading the writing of the manuscript and drafting figures. E.V. and E.G.G. contributed to the writing of the manuscript. M.P.L. provided funding and direction for the work.

Corresponding author

Correspondence to Markita Landry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Johannes Buyel, Keiji Numata and Edward Rybicki for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squire, H.J., Tomatz, S., Voke, E. et al. The emerging role of nanotechnology in plant genetic engineering. Nat Rev Bioeng 1, 314–328 (2023). https://doi.org/10.1038/s44222-023-00037-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44222-023-00037-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research