Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered nanoparticles for clinical assays

Abstract

Nanoparticles exhibit distinctive physical and chemical properties that make them effective mediators for optical, magnetic or electric signal transduction. Consequently, nanoparticles are increasingly used in the development of biosensing systems that can detect diseases rapidly and accurately, with potential applications extending to point-of-care settings. In this Review, we discuss key aspects of translating nanoparticles into clinical diagnostics, including particle optimization, device construction and biosensing applications. We focus on two representative particle types; gold nanoparticles and magnetic ferrite nanoparticles, which are widely used in biosensing. We explain the characteristics of these particles and illustrate how they can be tailored to detect various analytical targets such as nucleic acids, proteins and small molecules. Finally, we discuss emerging research directions to advance the clinical integration of nanoparticle assays.

Key points

  • Nanoparticles exhibit distinctive physical and chemical properties that make them effective mediators for optical, magnetic or electric signal transduction.

  • Nanoparticles can be used for in vitro biosensing, targeting various analytes such as nucleic acids, proteins and small molecules.

  • Gold nanoparticles and magnetic ferrite nanoparticles are the most widely used particles for biosensors to detect diseases rapidly and accurately.

  • Physical properties of nanoparticles can be fine-tuned by adjusting their size, shape and composition to improve the sensitivity of analytical assays or to expand their applicability in point-of-care testing.

  • To promote the translation of nanoparticle-based assays into clinical diagnostic tests, analytical accuracy, environmental safety and good manufacturing practices should be validated to ensure high performance standards.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of NPs and their physicochemical properties.
Fig. 2: NP-based assays for nucleic acid detection.
Fig. 3: NP-assisted detection of protein targets.
Fig. 4: Nanoparticle-based detection of small molecules.

Similar content being viewed by others

References

  1. Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17, 199–204 (2017).

    Article  Google Scholar 

  2. Vashist, S. K. In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics 10, 202 (2020).

    Article  Google Scholar 

  3. Sun, X. M., Wan, J. J. & Qian, K. Designed microdevices for in vitro diagnostics. Small Methods 1, 1700196 (2017).

    Article  Google Scholar 

  4. Liu, D. et al. Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate 3, e184 (2022).

    Article  Google Scholar 

  5. Song, P. et al. Limitations and opportunities of technologies for the analysis of cell-free DNA in cancer diagnostics. Nat. Biomed. Eng. 6, 232–245 (2022).

    Article  Google Scholar 

  6. Land, K. J., Boeras, D. I., Chen, X. S., Ramsay, A. R. & Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019).

    Article  Google Scholar 

  7. Kairdolf, B. A., Qian, X. & Nie, S. Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal. Chem. 89, 1015–1031 (2017). This review presents bioconjugated NPs for biomolecular detection in clinically relevant applications.

    Article  Google Scholar 

  8. Zhou, W., Gao, X., Liu, D. & Chen, X. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115, 10575–10636 (2015).

    Article  Google Scholar 

  9. Tam, F., Goodrich, G. P., Johnson, B. R. & Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 7, 496–501 (2007).

    Article  Google Scholar 

  10. Yin, B. et al. Magnetic-responsive surface-enhanced Raman scattering platform with tunable hot spot for ultrasensitive virus nucleic acid detection. ACS Appl. Mater. Interfaces 14, 4714–4724 (2022).

    Article  Google Scholar 

  11. Liu, Y. et al. fM-aM detection of the SARS-CoV-2 antigen by advanced lateral flow immunoassay based on gold nanospheres. ACS Appl. Nano. Mater. 4, 13826–13837 (2021).

    Article  Google Scholar 

  12. Marquina, C. et al. GMR sensors and magnetic nanoparticles for immuno-chromatographic assays. J. Magn. Magn. Mater. 324, 3495–3498 (2012).

    Article  Google Scholar 

  13. Nam, J. M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    Article  Google Scholar 

  14. Blum, A. P. et al. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 137, 2140–2154 (2015).

    Article  Google Scholar 

  15. Chang, D., Ma, Y., Xu, X., Xie, J. & Ju, S. Stimuli-responsive polymeric nanoplatforms for cancer therapy. Front. Bioeng. Biotechnol. 9, 707319 (2021).

    Article  Google Scholar 

  16. Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    Article  Google Scholar 

  17. Kwon, H. J. et al. Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv. Mater. 30, e1704290 (2018).

    Article  Google Scholar 

  18. Gupta, R. & Xie, H. Nanoparticles in daily life: applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol. 37, 209–230 (2018).

    Article  Google Scholar 

  19. Fadeel, B. & Garcia-Bennett, A. E. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010).

    Article  Google Scholar 

  20. Lee, J. H. et al. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 139, 8054–8057 (2017).

    Article  Google Scholar 

  21. Suea-Ngam, A. et al. Enzyme-assisted nucleic acid detection for infectious disease diagnostics: moving toward the point-of-care. ACS Sens. 5, 2701–2723 (2020).

    Article  Google Scholar 

  22. Szilagyi, M. et al. Circulating cell-free nucleic acids: main characteristics and clinical application. Int. J. Mol. Sci. 21, 6827 (2020).

    Article  Google Scholar 

  23. Fouz, M. F. & Appella, D. H. PNA clamping in nucleic acid amplification protocols to detect single nucleotide mutations related to cancer. Molecules 25, 786 (2020).

    Article  Google Scholar 

  24. Hermida-Romero, M. T. et al. Molecular detection of lymph node metastases in lung cancer patients using the one-step nucleic acid amplification method:clinical significance and prognostic value. Cells 11, 4010 (2022).

    Article  Google Scholar 

  25. Sulleiro, E., Munoz-Calderon, A. & Schijman, A. G. Role of nucleic acid amplification assays in monitoring treatment response in chagas disease: usefulness in clinical trials. Acta Trop. 199, 105120 (2019).

    Article  Google Scholar 

  26. Morgenstern, C., Cabric, S., Perka, C., Trampuz, A. & Renz, N. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn. Microbiol. Infect. Dis. 90, 115–119 (2018).

    Article  Google Scholar 

  27. Cheong, J. et al. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4, 1159–1167 (2020). This article presents a detection method for SARS-CoV-2 RNA by plasmonic thermocycling.

    Article  Google Scholar 

  28. Hanash, S. M., Pitteri, S. J. & Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008).

    Article  Google Scholar 

  29. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  Google Scholar 

  30. Crick, F. H. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    Google Scholar 

  31. Gao, Y., Huang, X., Zhu, Y. & Lv, Z. A brief review of monoclonal antibody technology and its representative applications in immunoassays. J. Immunoass. Immunochem. 39, 351–364 (2018).

    Article  Google Scholar 

  32. Brennan, D. J., O’Connor, D. P., Rexhepaj, E., Ponten, F. & Gallagher, W. M. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat. Rev. Cancer 10, 605–617 (2010).

    Article  Google Scholar 

  33. Suhre, K. et al. Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping. Nat. Commun. 15, 989 (2024).

    Article  Google Scholar 

  34. Dalirirad, S., Han, D. & Steckl, A. J. Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega 5, 32890–32898 (2020).

    Article  Google Scholar 

  35. Griss, R. et al. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 10, 598–603 (2014).

    Article  Google Scholar 

  36. Zhao, S. S. et al. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens. Bioelectron. 64, 664–670 (2015).

    Article  Google Scholar 

  37. Wu, Y. Y., Huang, P. & Wu, F. Y. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem. 304, 125377 (2020).

    Article  Google Scholar 

  38. Ruscito, A. & DeRosa, M. C. Small-molecule binding aptamers: selection strategies, characterization, and applications. Front. Chem. 4, 14 (2016).

    Article  Google Scholar 

  39. Peltomaa, R., Glahn-Martinez, B., Benito-Pena, E. & Moreno-Bondi, M. C. Optical biosensors for label-free detection of small molecules. Sensors 18, 4126 (2018).

    Article  Google Scholar 

  40. Wang, X., Cohen, L., Wang, J. & Walt, D. R. Competitive immunoassays for the detection of small molecules using single molecule arrays. J. Am. Chem. Soc. 140, 18132–18139 (2018).

    Article  Google Scholar 

  41. Xu, J. X., Alom, M. S., Yadav, R. & Fitzkee, N. C. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nat. Commun. 13, 7313 (2022).

    Article  Google Scholar 

  42. Ma, F., Li, C. C. & Zhang, C. Y. Development of quantum dot-based biosensors: principles and applications. J. Mater. Chem. B 6, 6173–6190 (2018).

    Article  Google Scholar 

  43. Huang, C. H. et al. Compact and filter-free luminescence biosensor for mobile in vitro diagnoses. ACS Nano 13, 11698–11706 (2019).

    Article  Google Scholar 

  44. Ji, C., Zhou, Y., Leblanc, R. M. & Peng, Z. Recent developments of carbon dots in biosensing: a review. ACS Sens. 5, 2724–2741 (2020).

    Article  Google Scholar 

  45. Afreen, S., He, Z., Xiao, Y. & Zhu, J. J. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J. Mater. Chem. B 8, 1338–1349 (2020).

    Article  Google Scholar 

  46. Nikolova, M. P., Joshi, P. B. & Chavali, M. S. Updates on biogenic metallic and metal oxide nanoparticles: therapy, drug delivery and cytotoxicity. Pharmaceutics 15, 1650 (2023).

    Article  Google Scholar 

  47. Yang, S. Z. et al. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles. Mikrochim. Acta. 188, 258 (2021).

    Article  Google Scholar 

  48. Wang, L., Kafshgari, M. H. & Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 30, 2005400 (2020).

    Article  Google Scholar 

  49. Nilghaz, A. et al. Noble-metal nanoparticle-based colorimetric diagnostic assays for point-of-need applications. ACS Appl. Nano. Mater. 4, 12808–12824 (2021).

    Article  Google Scholar 

  50. Eivazzadeh-Keihan, R. et al. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. TrAC Trends Anal. Chem. 141, 116291 (2021).

    Article  Google Scholar 

  51. Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 12, 274–281 (2017).

    Article  Google Scholar 

  52. Wuithschick, M. et al. Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052–7071 (2015).

    Article  Google Scholar 

  53. Yeh, Y. C., Creran, B. & Rotello, V. M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4, 1871–1880 (2012). This review discusses multiple attributes of AuNPs and their potential use in sensing, imaging and therapeutics.

    Article  Google Scholar 

  54. Agunloye, E., Panariello, L., Gavriilidis, A. & Mazzei, L. A model for the formation of gold nanoparticles in the citrate synthesis method. Chem. Eng. Sci. 191, 318–331 (2018).

    Article  Google Scholar 

  55. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  56. Fan, X. F., Zheng, W. T. & Singh, D. J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3, e179 (2014).

    Article  Google Scholar 

  57. Hong, Y. A. & Ha, J. W. Enhanced refractive index sensitivity of localized surface plasmon resonance inflection points in single hollow gold nanospheres with inner cavity. Sci. Rep. 12, 6983 (2022).

    Article  Google Scholar 

  58. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006).

    Article  Google Scholar 

  59. Kusuma, S. A. F., Harmonis, J. A., Pratiwi, R. & Hasanah, A. N. Gold nanoparticle-based colorimetric sensors: properties and application in detection of heavy metals and biological molecules. Sensors 23, 8172 (2023).

    Article  Google Scholar 

  60. Wang, B. et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 14, 1341 (2023).

    Article  Google Scholar 

  61. Parolo, C. et al. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 15, 3788–3816 (2020).

    Article  Google Scholar 

  62. Kaiser, L., Weisser, J., Kohl, M. & Deigner, H. P. Small molecule detection with aptamer based lateral flow assays: applying aptamer-C-reactive protein cross-recognition for ampicillin detection. Sci. Rep. 8, 5628 (2018).

    Article  Google Scholar 

  63. Liang, T. et al. Investigation of reagent delivery formats in a multivalent malaria sandwich immunoassay and implications for assay performance. Anal. Chem. 88, 2311–2320 (2016).

    Article  Google Scholar 

  64. Liang, P. et al. Ag nanoparticles with ultrathin au shell-based lateral flow immunoassay for colorimetric and SERS dual-mode detection of SARS-CoV-2 IgG. Anal. Chem. 94, 8466–8473 (2022).

    Article  Google Scholar 

  65. Tan, C. W. et al. Use of a point-of-care test to rapidly assess levels of SARS-CoV-2 nasal neutralising antibodies in vaccinees and breakthrough infected individuals. Sci. Rep. 13, 20263 (2023).

    Article  Google Scholar 

  66. Oeschger, T., Kret, L. & Erickson, D. Lateral flow assay for detection and recovery of live cell Neisseria gonorrhoeae. Curr. Res. Biotechnol. 4, 359–364 (2022).

    Article  Google Scholar 

  67. Liu, G. et al. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 81, 10013–10018 (2009).

    Article  Google Scholar 

  68. Naorungroj, S., Teengam, P., Vilaivan, T. & Chailapakul, O. Paper-based DNA sensor enabling colorimetric assay integrated with smartphone for human papillomavirus detection. N. J. Chem 45, 6960–6967 (2021).

    Article  Google Scholar 

  69. Reineck, P. et al. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles. ACS Nano 7, 6636–6648 (2013).

    Article  Google Scholar 

  70. Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).

    Article  Google Scholar 

  71. Swierczewska, M., Lee, S. & Chen, X. The design and application of fluorophore-gold nanoparticle activatable probes. Phys. Chem. Chem. Phys. 13, 9929–9941 (2011).

    Article  Google Scholar 

  72. Dubertret, B., Calame, M. & Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 19, 365–370 (2001).

    Article  Google Scholar 

  73. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  Google Scholar 

  74. Jia, J. et al. Spike growth on patterned gold nanoparticle scaffolds. Nano Lett. 23, 11260–11265 (2023).

    Article  Google Scholar 

  75. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  Google Scholar 

  76. Cardoso, V. F. et al. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7, 1700845 (2018). This review provides an outlook of MNPs for advanced biomedical applications.

    Article  Google Scholar 

  77. Coricovac, D. E. et al. Biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles: synthesis, characterization and toxicological profile. Front. Pharmacol. 8, 154 (2017).

    Article  Google Scholar 

  78. Valdiglesias, V. et al. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J. Trace Elem. Med. Biol. 38, 53–63 (2016).

    Article  Google Scholar 

  79. Lee, H., Shin, T. H., Cheon, J. & Weissleder, R. Recent developments in magnetic diagnostic systems. Chem. Rev. 115, 10690–10724 (2015).

    Article  Google Scholar 

  80. Patsula, V. et al. Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces 8, 7238–7247 (2016).

    Article  Google Scholar 

  81. Lee, J. H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007).

    Article  Google Scholar 

  82. Jang, J. T. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 1234–1238 (2009).

    Article  Google Scholar 

  83. Noh, S. H. et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721 (2012).

    Article  Google Scholar 

  84. Lu, L. T. et al. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7, 19596–19610 (2015).

    Article  Google Scholar 

  85. Gutierrez, L. et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology 30, 112001 (2019).

    Article  Google Scholar 

  86. Standley, K. J. Oxide Magnetic Materials 2nd edn (Clarendon Press, 1972).

  87. Wang, Z. et al. Nanoparticle amplification labeling for high-performance magnetic cell sorting. Nano Lett. 22, 4774–4783 (2022).

    Article  Google Scholar 

  88. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  89. Mia, A. K., Meyyappan, M. & Giri, P. K. Two-dimensional transition metal dichalcogenide based biosensors: from fundamentals to healthcare applications. Biosensors 13, 169 (2023).

    Article  Google Scholar 

  90. Park, H. et al. Ultrasensitive and selective field-effect transistor-based biosensor created by rings of MoS2 nanopores. ACS Nano 16, 1826–1835 (2022).

    Article  Google Scholar 

  91. Nam, H. et al. Multiple MoS2 transistors for sensing molecule interaction kinetics. Sci. Rep. 5, 10546 (2015).

    Article  Google Scholar 

  92. Wasfi, A. et al. Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles. Sci. Rep. 12, 18155 (2022).

    Article  Google Scholar 

  93. Guerrini, L., Alvarez-Puebla, R. A. & Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials 11, 1154 (2018). This review explains multiple surface modification methodologies to preserve the integrity and stability of NPs in biological fluids.

    Article  Google Scholar 

  94. Bagwe, R. P., Hilliard, L. R. & Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22, 4357–4362 (2006).

    Article  Google Scholar 

  95. Bantz, C. et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J. Nanotechnol. 5, 1774–1786 (2014).

    Article  Google Scholar 

  96. Studart, A. R., Amstad, E. & Gauckler, L. J. Colloidal stabilization of nanoparticles in concentrated suspensions. Langmuir 23, 1081–1090 (2007).

    Article  Google Scholar 

  97. Bhattacharjee, K. & Prasad, B. L. V. Surface functionalization of inorganic nanoparticles with ligands: a necessary step for their utility. Chem. Soc. Rev. 52, 2573–2595 (2023).

    Article  Google Scholar 

  98. Debayle, M. et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials 219, 119357 (2019).

    Article  Google Scholar 

  99. Wang, Z. et al. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. J. Mater. Chem. B 9, 677–682 (2021).

    Article  Google Scholar 

  100. Liu, J., Dai, C. & Hu, Y. Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: effects of pH, cations, anions, and humic acid. Environ. Res. 161, 49–60 (2018).

    Article  Google Scholar 

  101. Zhu, N. et al. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8, 810 (2018).

    Article  Google Scholar 

  102. Sun, J., Guo, L., Bao, Y. & Xie, J. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosens. Bioelectron. 28, 152–157 (2011).

    Article  Google Scholar 

  103. Yuan, Y. et al. Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir 28, 13051–13059 (2012).

    Article  Google Scholar 

  104. Frank, L. A. et al. Chitosan as a coating material for nanoparticles intended for biomedical applications. React. Funct. Polym. 147, 104459 (2020).

    Article  Google Scholar 

  105. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  Google Scholar 

  106. Robinson, D. B. et al. DNA-functionalized MFe2O4 (M = Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir 21, 3096–3103 (2005).

    Article  Google Scholar 

  107. Wang, G. S., Ma, Y. Y., Tong, Y. & Dong, X. F. Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles. Smart Mater. Struct. 25, 035028 (2016).

    Article  Google Scholar 

  108. Skora, B., Szychowski, K. A. & Gminski, J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur. J. Pharm. Biopharm. 154, 153–165 (2020).

    Article  Google Scholar 

  109. Nam, J. et al. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65, 622–648 (2013).

    Article  Google Scholar 

  110. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005).

    Article  Google Scholar 

  111. Vaughan, H. J., Green, J. J. & Tzeng, S. Y. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater. 32, e1901081 (2020).

    Article  Google Scholar 

  112. Schreiber, C. L. & Smith, B. D. Molecular conjugation using non-covalent click chemistry. Nat. Rev. Chem. 3, 393–400 (2019).

    Article  Google Scholar 

  113. Idiago-Lopez, J., Moreno-Antolin, E., de la Fuente, J. M. & Fratila, R. M. Nanoparticles and bioorthogonal chemistry joining forces for improved biomedical applications. Nanoscale Adv. 3, 1261–1292 (2021).

    Article  Google Scholar 

  114. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001).

    Article  Google Scholar 

  115. Colombo, M. et al. Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition. Angew. Chem. Int. Ed. Engl. 51, 496–499 (2012).

    Article  Google Scholar 

  116. Liu, R. et al. Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl. Mater. Interfaces 9, 38222–38229 (2017).

    Article  Google Scholar 

  117. Algar, W. R. et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22, 825–858 (2011).

    Article  Google Scholar 

  118. Di Marco, M. et al. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. Int. J. Nanomed. 5, 37–49 (2010).

    Google Scholar 

  119. Dennler, P., Fischer, E. & Schibli, R. Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4, 197–224 (2015).

    Article  Google Scholar 

  120. Hoose, A., Vellacott, R., Storch, M., Freemont, P. S. & Ryadnov, M. G. DNA synthesis technologies to close the gene writing gap. Nat. Rev. Chem. 7, 144–161 (2023).

    Article  Google Scholar 

  121. Poonthiyil, V., Lindhorst, T. K., Golovko, V. B. & Fairbanks, A. J. Recent applications of click chemistry for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles. Beilstein J. Org. Chem. 14, 11–24 (2018).

    Article  Google Scholar 

  122. Leriche, G., Chisholm, L. & Wagner, A. Cleavable linkers in chemical biology. Bioorg. Med. Chem. 20, 571–582 (2012).

    Article  Google Scholar 

  123. Witt, D. Recent developments in disulfide bond formation. Synthesis 16, 2491–2509 (2008).

    Article  Google Scholar 

  124. Beard, H. A., Korovesis, D., Chen, S. & Verhelst, S. H. L. Cleavable linkers and their application in MS-based target identification. Mol. Omics 17, 197–209 (2021).

    Article  Google Scholar 

  125. Sun, N. et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat. Commun. 11, 4489 (2020).

    Article  Google Scholar 

  126. Flynn, C. D. et al. Biomolecular sensors for advanced physiological monitoring. Nat. Rev. Bioeng. 1, 560–575 (2023).

    Article  Google Scholar 

  127. Lee, C. Y. et al. Development of integrated systems for on-site infection detection. Acc. Chem. Res. 54, 3991–4000 (2021).

    Article  Google Scholar 

  128. Altug, H., Oh, S. H., Maier, S. A. & Homola, J. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol. 17, 5–16 (2022).

    Article  Google Scholar 

  129. Farka, Z., Jurik, T., Kovar, D., Trnkova, L. & Skladal, P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem. Rev. 117, 9973–10042 (2017).

    Article  Google Scholar 

  130. Malik, S. et al. Nanomaterials-based biosensor and their applications: a review. Heliyon 9, e19929 (2023).

    Article  Google Scholar 

  131. Ji, D., Zhao, J., Liu, Y. & Wei, D. Electrical nanobiosensors for nucleic acid based diagnostics. J. Phys. Chem. Lett. 14, 4084–4095 (2023).

    Article  Google Scholar 

  132. Melnychuk, N. & Klymchenko, A. S. DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright FRET platform for amplified detection of nucleic acids. J. Am. Chem. Soc. 140, 10856–10865 (2018).

    Article  Google Scholar 

  133. Moabelo, K. L. et al. Nanotechnology-based strategies for effective and rapid detection of SARS-CoV-2. Materials 14, 7851 (2021).

    Article  Google Scholar 

  134. Blumenfeld, N. R. et al. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis. Nat. Nanotechnol. 17, 984–992 (2022).

    Article  Google Scholar 

  135. Qiu, G. et al. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14, 5268–5277 (2020). This article reports SARS-CoV-2 detection through localized surface plasmonic resonance sensing, exploiting the photothermal effect of plasmonic NPs.

    Article  Google Scholar 

  136. Tang, C. et al. Application of magnetic nanoparticles in nucleic acid detection. J. Nanobiotechnol. 18, 62 (2020).

    Article  Google Scholar 

  137. Chung, H. J., Castro, C. M., Im, H., Lee, H. & Weissleder, R. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol 8, 369–375 (2013). This article presents a dual-probe NP system for detecting and phenotyping human pathogens by microNMR by detecting targets labelled with MNPs.

    Article  Google Scholar 

  138. Vrettou, C. S. et al. Accuracy of T2 magnetic resonance assays as point-of-care methods in the intensive care unit. J. Hosp. Infect. 139, 240–248 (2023).

    Article  Google Scholar 

  139. You, M. et al. Ultrafast photonic PCR based on photothermal nanomaterials. Trends. Biotechnol. 38, 637–649 (2020).

    Article  Google Scholar 

  140. Morozov, V. N., Kolyvanova, M. A., Dement’eva, O. V., Rudoy, V. M. & Kuzmin, V. A. Fluorescence superquenching of SYBR Green I in crowded DNA by gold nanoparticles. J. Lumin. 219, 116898 (2020).

    Article  Google Scholar 

  141. Gao, L., Yang, Q., Wu, P. & Li, F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst 145, 4069–4078 (2020).

    Article  Google Scholar 

  142. Billingsley, M. M., Riley, R. S. & Day, E. S. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS One 12, e0177592 (2017).

    Article  Google Scholar 

  143. Satija, J., Punjabi, N., Mishra, D. & Mukherji, S. Plasmonic-ELISA: expanding horizons. RSC Adv. 6, 85440–85456 (2016).

    Article  Google Scholar 

  144. Thanh, N. T. K. & Rosenzweig, Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem. 74, 1624–1628 (2002).

    Article  Google Scholar 

  145. Wu, J. et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48, 1004–1076 (2019).

    Article  Google Scholar 

  146. Das, B. et al. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 13, 193 (2021).

    Article  Google Scholar 

  147. Mirica, A. C. et al. Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process. Front. Bioeng. Biotechnol. 10, 922772 (2022).

    Article  Google Scholar 

  148. Alkilany, A. M. et al. Colloidal stability of citrate and mercaptoacetic acid capped gold nanoparticles upon lyophilization: effect of capping ligand attachment and type of cryoprotectants. Langmuir 30, 13799–13808 (2014).

    Article  Google Scholar 

  149. Hamaly, M. A., Abulateefeh, S. R., Al-Qaoud, K. M. & Alkilany, A. M. Freeze-drying of monoclonal antibody-conjugated gold nanorods: colloidal stability and biological activity. Int. J. Pharm. 550, 269–277 (2018).

    Article  Google Scholar 

  150. Posthuma-Trumpie, G. A., Korf, J. & van Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393, 569–582 (2009). This review discusses strengths, weaknesses, opportunities and challenges of NP-based lateral flow immunoassays.

    Article  Google Scholar 

  151. Sloan-Dennison, S., O’Connor, E., Dear, J. W., Graham, D. & Faulds, K. Towards quantitative point of care detection using SERS lateral flow immunoassays. Anal. Bioanal. Chem. 414, 4541–4549 (2022).

    Article  Google Scholar 

  152. Liu, Y., Zhan, L., Qin, Z., Sackrison, J. & Bischof, J. C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15, 3593–3611 (2021).

    Article  Google Scholar 

  153. Gupta, R. et al. Ultrasensitive lateral-flow assays via plasmonically active antibody-conjugated fluorescent nanoparticles. Nat. Biomed. Eng. 7, 1556–1570 (2023).

    Article  Google Scholar 

  154. Hwang, J., Lee, S. & Choo, J. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 8, 11418–11425 (2016).

    Article  Google Scholar 

  155. Li, W. et al. Battery-triggered ultrasensitive electrochemiluminescence detection on microfluidic paper-based immunodevice based on dual-signal amplification strategy. Anal. Chim. Acta 767, 66–74 (2013).

    Article  Google Scholar 

  156. Taton, K., Johnson, D., Guire, P., Lange, E. & Tondra, M. Lateral flow immunoassay using magnetoresistive sensors. J. Magn. Magn. Mater. 321, 1679–1682 (2009).

    Article  Google Scholar 

  157. Gong, Y. et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta 201, 126–133 (2019).

    Article  Google Scholar 

  158. Chen, Z. et al. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem. 92, 7226–7231 (2020).

    Article  Google Scholar 

  159. Mak, W. C., Beni, V. & Turner, A. P. F. Lateral-flow technology: from visual to instrumental. TrAC Trends Anal. Chem. 79, 297–305 (2016).

    Article  Google Scholar 

  160. Tran, V., Walkenfort, B., Konig, M., Salehi, M. & Schlucker, S. Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew. Chem. Int. Ed. Engl. 58, 442–446 (2019).

    Article  Google Scholar 

  161. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  Google Scholar 

  162. Cohen, L. et al. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 14, 9491–9501 (2020).

    Article  Google Scholar 

  163. Akama, K., Shirai, K. & Suzuki, S. Droplet-free digital enzyme-linked immunosorbent assay based on a tyramide signal amplification system. Anal. Chem. 88, 7123–7129 (2016).

    Article  Google Scholar 

  164. Curtin, K., Fike, B. J., Binkley, B., Godary, T. & Li, P. Recent advances in digital biosensing technology. Biosensors 12, 673 (2022).

    Article  Google Scholar 

  165. Monroe, M. R. et al. Single nanoparticle detection for multiplexed protein diagnostics with attomolar sensitivity in serum and unprocessed whole blood. Anal. Chem. 85, 3698–3706 (2013).

    Article  Google Scholar 

  166. Li, J. R. et al. A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy. Nat. Commun. 12, 1087 (2021).

    Article  Google Scholar 

  167. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article  Google Scholar 

  168. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  Google Scholar 

  169. Gardner, L., Kostarelo, K., Mallick, P., Dive, C. & Hadjidemetriou, M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat. Rev. Clin. Oncol. 19, 551–561 (2022).

    Article  Google Scholar 

  170. Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    Article  Google Scholar 

  171. Grys, D. B. et al. Controlling atomic-scale restructuring and cleaning of gold nanogap multilayers for surface-enhanced Raman scattering sensing. ACS Sens. 8, 2879–2888 (2023).

    Article  Google Scholar 

  172. Sibug-Torres, S. M. et al. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat. Commun. 15, 2022 (2024).

    Article  Google Scholar 

  173. Plou, J. et al. Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring toward precision medicine. ACS Photonics 9, 333–350 (2022).

    Article  Google Scholar 

  174. Lee, W. et al. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nat. Commun. 12, 159 (2021).

    Article  Google Scholar 

  175. Cho, H. et al. Surface-enhanced Raman spectroscopy-based label-free insulin detection at physiological concentrations for analysis of islet performance. ACS Sens. 3, 65–71 (2018).

    Article  Google Scholar 

  176. Shalabaeva, V. et al. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy. PLoS One 12, e0175581 (2017).

    Article  Google Scholar 

  177. Liana, D. D., Raguse, B., Gooding, J. J. & Chow, E. Recent advances in paper-based sensors. Sensors 12, 11505–11526 (2012).

    Article  Google Scholar 

  178. Xu, K., Zhou, R., Takei, K. & Hong, M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 6, 1900925 (2019).

    Article  Google Scholar 

  179. Li, Y. et al. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147, 493–500 (2016).

    Article  Google Scholar 

  180. Yu, W. W. & White, I. M. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 82, 9626–9630 (2010).

    Article  Google Scholar 

  181. Romo-Herrera, J. M. et al. Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Mater. Today Bio. 11, 100125 (2021).

    Article  Google Scholar 

  182. Cheng, H. et al. Drug preconcentration and direct quantification in biofluids using 3D-Printed paper cartridge. Biosens. Bioelectron. 189, 113266 (2021).

    Article  Google Scholar 

  183. Restaino, S. M., Berger, A. & White, I. M. Inkjet-printed paper fluidic devices for onsite detection of antibiotics using surface-enhanced Raman spectroscopy. Methods Mol. Biol. 1572, 525–540 (2017).

    Article  Google Scholar 

  184. Berger, A. G., Restaino, S. M. & White, I. M. Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal. Chim. Acta 949, 59–66 (2017).

    Article  Google Scholar 

  185. Ates, H. C. et al. On-site therapeutic drug monitoring. Trends Biotechnol. 38, 1262–1277 (2020).

    Article  Google Scholar 

  186. Lin, H. Y. et al. Direct thermal growth of gold nanopearls on 3D interweaved hydrophobic fibers as ultrasensitive portable SERS substrates for clinical applications. Small 19, e2207404 (2023).

    Article  Google Scholar 

  187. Ahmed, S. et al. Current advances in immunoassays for the detection of antibiotics residues: a review. Food Agr. Immunol. 31, 268–290 (2020).

    Article  Google Scholar 

  188. Xiong, Y., Leng, Y. K., Li, X. M., Huang, X. L. & Xiong, Y. H. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC Trends Anal. Chem. 126, 115861 (2020).

    Article  Google Scholar 

  189. Hulme, E. C. & Trevethick, M. A. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 161, 1219–1237 (2010).

    Article  Google Scholar 

  190. Li, D. et al. Ultrasensitive competitive lateral flow immunoassay with visual semiquantitative inspection and flexible quantification capabilities. Anal. Chem. 94, 2996–3004 (2022).

    Article  Google Scholar 

  191. Apilux, A., Rengpipat, S., Suwanjang, W. & Chailapakul, O. Development of competitive lateral flow immunoassay coupled with silver enhancement for simple and sensitive salivary cortisol detection. EXCLI J. 17, 1198–1209 (2018).

    Google Scholar 

  192. Sotnikov, D. V., Barshevskaya, L. V., Bartosh, A. V., Zherdev, A. V. & Dzantiev, B. B. Double competitive immunodetection of small analyte: realization for highly sensitive lateral flow immunoassay of chloramphenicol. Biosensors 12, 343 (2022).

    Article  Google Scholar 

  193. Yu, H. et al. A rapid assay provides on-site quantification of tetrahydrocannabinol in oral fluid. Sci. Transl. Med. 13, eabe2352 (2021).

    Article  Google Scholar 

  194. Di Nardo, F., Chiarello, M., Cavalera, S., Baggiani, C. & Anfossi, L. Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives. Sensors 21, 5185 (2021).

    Article  Google Scholar 

  195. Ardalan, S. & Ignaszak, A. Innovations and challenges in electroanalytical tools for rapid biosurveillance of SARS-CoV-2. Adv. Mater. Technol. 7, 2200208 (2022).

    Article  Google Scholar 

  196. Zhao, H. et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem. 327, 128899 (2021).

    Article  Google Scholar 

  197. Hwang, H. et al. MESIA: magnetic force-assisted electrochemical sandwich immunoassays for quantification of prostate-specific antigen in human serum. Anal. Chim. Acta. 1061, 92–100 (2019).

    Article  Google Scholar 

  198. Khalid, M. F. et al. Performance of rapid antigen tests for COVID-19 diagnosis: a systematic review and meta-analysis. Diagnostics 12, 110 (2022).

    Article  Google Scholar 

  199. Green, D. A. & StGeorge, K. Rapid antigen tests for influenza: rationale and significance of the FDA reclassification. J. Clin. Microbiol. 56, e00711-18 (2018).

    Article  Google Scholar 

  200. Wahl, C. B. et al. Machine learning-accelerated design and synthesis of polyelemental heterostructures. Sci. Adv. 7, eabj5505 (2021).

    Article  Google Scholar 

  201. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  Google Scholar 

  202. Wiggins, W. F. & Tejani, A. S. On the opportunities and risks of foundation models for natural language processing in radiology. Radiol. Artif. Intell. 4, e220119 (2022).

    Article  Google Scholar 

  203. Bradbury, A. & Pluckthun, A. Reproducibility: standardize antibodies used in research. Nature 518, 27–29 (2015).

    Article  Google Scholar 

  204. Kricka, L. J. Human anti-animal antibody interferences in immunological assays. Clin. Chem. 45, 942–956 (1999).

    Article  Google Scholar 

  205. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019).

    Article  Google Scholar 

  206. Baek, M. & Baker, D. Deep learning and protein structure modeling. Nat. Methods 19, 13–14 (2022).

    Article  Google Scholar 

  207. BelBruno, J. J. Molecularly imprinted polymers. Chem. Rev. 119, 94–119 (2019).

    Article  Google Scholar 

  208. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  Google Scholar 

  209. Naccache, S. N. et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 24, 1180–1192 (2014).

    Article  Google Scholar 

  210. Abdolahpur Monikh, F. et al. Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nat. Commun. 12, 899 (2021).

    Article  Google Scholar 

  211. Schmutz, M. et al. A methodological safe-by-design approach for the development of nanomedicines. Front. Bioeng. Biotechnol. 8, 258 (2020).

    Article  Google Scholar 

  212. Burello, E. & Worth, A. P. QSAR modeling of nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 298–306 (2011).

    Article  Google Scholar 

  213. Fourches, D. et al. Quantitative nanostructure-activity relationship modeling. ACS Nano 4, 5703–5712 (2010).

    Article  Google Scholar 

  214. Yang, Z. et al. Application of nanomaterials to enhance polymerase chain reaction. Molecules 27, 8854 (2022).

    Article  Google Scholar 

  215. Teawprasong, P. et al. Solvent-sensitive nanoparticle-enhanced PCR assay for the detection of enterotoxigenic Escherichia coli. Sci. Rep. 12, 20677 (2022).

    Article  Google Scholar 

  216. Mettenbrink, E. M., Yang, W. & Wilhelm, S. Bioimaging with upconversion nanoparticles. Adv. Photonics Res. 3, 20220909 (2022).

    Article  Google Scholar 

  217. Koroleva, E. A., Shabalkin, I. D. & Krivoshapkin, P. V. Monometallic and alloy nanoparticles: a review of biomedical applications. J. Mater. Chem. B 11, 3054–3070 (2023).

    Article  Google Scholar 

  218. Roh, Y. H. et al. CRISPR-enhanced hydrogel microparticles for multiplexed detection of nucleic acids. Adv. Sci. 10, e2206872 (2023).

    Article  Google Scholar 

  219. Klosz, K. Quality management for the processing of medical devices. GMS Krankenhhyg. Interdiszip. 3, Doc22 (2008).

    Google Scholar 

  220. Jarow, J. P. & Baxley, J. H. Medical devices: US medical device regulation. Urol. Oncol. 33, 128–132 (2015).

    Article  Google Scholar 

  221. Moore, W. & Frye, S. Review of HIPAA, part 1: history, protected health information, and privacy and security rules. J. Nucl. Med. Technol. 47, 269–272 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

J. Cheon is supported by the Institute for Basic Science IBS-R026-D1. H.L. is supported by National Institutes of Health U01CA284982 and Massachusetts General Hospital scholar fund. J.H.L. is supported by Yonsei University Research Fund (2021-22-0323). A.J. is supported by a National Research Foundation NRF-2022R1C1C2008563 grant funded by the Korean government.

Author information

Authors and Affiliations

Authors

Contributions

J. Cheon and H.L. initiated the Review. J. Cheong and A.J. conducted the literature search. All authors developed the outline and contributed to the writing, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Hakho Lee or Jinwoo Cheon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Dipanjan Pan, Zhenpeng Qin, Tingting Zhang and Laura Fabris for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheong, J., Jo, A., Lee, J. et al. Engineered nanoparticles for clinical assays. Nat Rev Bioeng (2024). https://doi.org/10.1038/s44222-024-00208-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-024-00208-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing