Abstract
Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183â191 (2007).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197â200 (2005).
Bostwick, A. et al. Quasiparticle dynamics in graphene. Nature Phys. 3, 36â40 (2007).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666â669 (2004).
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191â1196 (2006).
Chen, Z., Lin, Y.-M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228â232 (2007).
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652â655 (2007).
de Heer, W. A. et al. Epitaxial graphene. Solid State Commun. 143, 92â100 (2007).
NâDiaye, A. T., Bleikamp, S., Feibelman, P. J. & Michely, T. Two-dimensional Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett. 97, 215501 (2006).
Coraux, J., NâDiaye, A. T., Busse, C. & Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 8, 565â570 (2008).
Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).
Vazquez de Parga, A. L. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008).
Pan, Y., Shi, D.-X. & Gao, H.-J. Formation of graphene on Ru(0001) surface. Chinese Phys. 3151 (2007).
Pan, Y. et al. Millimeter-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. Preprint at <http://arxiv.org/abs/0709.2858> (2007).
Arnoult, W. J. & McLellan, R. B. The solubility of carbon in rhodium, ruthenium, iridium, and rhenium. Scr. Metall. 6, 1013â1018 (1972).
Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954 (1996).
Hass, J. et al. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006).
Land, T. A. et al. STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264, 261â270 (1992).
Schmid, A. K. et al. The chemistry of reaction-diffusion fronts investigated by microscopic LEED IâV fingerprinting. Surf. Sci. Part 1 331â333, 225â230 (1995).
Blum, V. & Heinz, K. Fast LEED intensity calculations for surface crystallography using tensor LEED. Comput. Phys. Commun. 134, 392â425 (2001).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401â187404 (2006).
Olijnyk, H., Jephcoat, A. P. & Refson, K. On optical phonons and elasticity in the hcp transition metals Fe, Ru and Re at high pressure. Europhys. Lett. 53, 504â510 (2001).
Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electronâphonon coupling in graphene. Phys. Rev. Lett. 98, 166802â166804 (2007).
Pisana, S. et al. Breakdown of the adiabatic BornâOppenheimer approximation in graphene. Nature Mater. 6, 198â201 (2007).
Das, A. et al. Electrochemically top gated graphene: Monitoring dopants by Raman scattering. Preprint at <http://arxiv.org/abs/0709.1174> (2007).
Matsubara, K., Sugihara, K. & Tsuzuku, T. Electrical resistance in the c direction of graphite. Phys. Rev. B 41, 969 (1990).
Bachtold, A. et al. AharonovâBohm oscillations in carbon nanotubes. Nature 397, 673â675 (1999).
Bourlon, B. et al. Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett. 93, 176806 (2004).
Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922â1925 (1997).
Beebe, J. M. et al. Transition from direct tunneling to field emission in metalâmoleculeâmetal junctions. Phys. Rev. Lett. 97, 026801â026804 (2006).
Drickamer, H. G. Pi electron systems at high pressure. Science 156, 1712 (1967).
Varchon, F. et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007).
Mattausch, A. & Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 99, 076802â076804 (2007).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1â186 (2002).
Maleville, C. & Mazure, C. Smart-cut technology: From 300âmm ultrathin SOI production to advanced engineered substrates. Solid State Electron. 48, 1055â1063 (2004).
Sutter, P. W. & Sutter, E. A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops. Nature Mater. 6, 363â366 (2007).
Sutter, E. et al. Assembly of ordered carbon shells on GaN nanowires. Appl. Phys. Lett. 90, 093118 (2007).
Acknowledgements
The authors thank T. Valla and J. Camacho for access to a cleaved monolayer graphene sample. Work carried out under the auspices of the US Department of Energy under contract No. DE-AC02-98CH1-886.
Author information
Authors and Affiliations
Contributions
P.W.S. and E.A.S. planned the study, carried out all experiments, and analysed the data. J.-I.F. carried out the LEED I(V) simulations. P.W.S. wrote the paper, and all authors commented on the manuscript.
Corresponding author
Rights and permissions
About this article
Cite this article
Sutter, P., Flege, JI. & Sutter, E. Epitaxial graphene on ruthenium. Nature Mater 7, 406â411 (2008). https://doi.org/10.1038/nmat2166
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2166