Abstract
We present a semiconductor injection laser operating in continuous wave with emission covering more than one octave in frequency and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneous quantum cascade structure operating in the terahertz range. Laser emission in continuous wave takes place from 1.64â THz to 3.35â THz with optical powers in the milliwatt range and more than 80 modes above threshold. For narrow waveguides, a collapse of the free-running beatnote to linewidths of 980â Hz, limited by jitter, indicate frequency comb operation on a spectral bandwidth as wide as 624â GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based terahertz frequency combs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Hua, Z., Scalari, G., Faist, J., Dunbar, L. A. & Houdré, R. Design and fabrication technology for high performance electrical pumped terahertz photonic crystal band edge lasers with complete photonic band gap. J. Appl. Phys. 108, 093104 (2010).
Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nature Photon. 3, 723â737 (2009).
TurÄinková, D., Amanti, M. I., Castellano, F., Beck, M. & Faist, J. Continuous tuning of terahertz distributed feedback quantum cascade laser by gas condensation and dielectric deposition. Appl. Phys. Lett. 102, 181113 (2013).
Xu, J. et al. Tunable terahertz quantum cascade lasers with an external cavity. Appl. Phys. Lett. 91, 121104 (2007).
Hugi, A. et al. External cavity quantum cascade laser tunable from 7.6 to 11.4â um. Appl. Phys. Lett. 95, 061103 (2009).
Riedi, S., Hugi, A., Bismuto, A., Beck, M. & Faist, J. Broadband external cavity tuning in the 3â4â µm window. Appl. Phys. Lett. 103, 031108 (2013).
Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831â838 (2003).
Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nature Photon. 5, 306â313 (2011).
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233â237 (2002).
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214â1217 (2007).
Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229â233 (2012).
Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51âB62 (2010).
Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nature Photon. 6, 440â449 (2012).
Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542â1544 (2004).
Yasui, T. et al. Terahertz frequency metrology based on frequency comb. IEEE J. Sel. Top. Quantum Electron. 17, 191â201 (2011).
Burghoff, D. et al. Terahertz laser frequency combs. Nature Photon. 8, 462â467 (2014).
Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264â2267 (2000).
Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).
Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55â57 (2010).
Diddams, S. A. et al. Direct link between microwave and optical frequencies with a 300â THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102â5105 (2000).
Wadsworth, W. et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 19, 2148â2155 (2002).
Bellini, M. & Hänsch, T. W. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer. Opt. Lett. 25, 1049â1051 (2000).
Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).
Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373â375 (2001).
Fortier, T. M., Jones, D. J. & Cundiff, S. T. Phase stabilization of an octave-spanning Ti:sapphire laser. Opt. Lett. 28, 2198â2200 (2003).
Khurgin, J. B., Dikmelik, Y., Hugi, A. & Faist, J. Coherent frequency combs produced by self frequency modulation in quantum cascade lasers. Appl. Phys. Lett. 104, 081118 (2014).
Amanti, M. et al. Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage. New J. Phys. 11, 125022 (2009).
Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45â46 (2009).
Faist, J. et al. Quantum cascade laser. Science 264, 553â556 (1994).
Gmachl, C., Sivco, D. L., Colombelli, R., Capasso, F. & Cho, A. Y. Ultra-broadband semiconductor laser. Nature 415, 883â887 (2002).
Freeman, J. R., Marshall, O. P., Beere, H. E. & Ritchie, D. A. Electrically switchable emission in terahertz quantum cascade lasers. Opt. Express 16, 19830 (2008).
Freeman, J. R. et al. Dual wavelength emission from a terahertz quantum cascade laser. Appl. Phys. Lett. 96, 051120 (2010).
Khanna, S. P., Salih, M., Dean, P., Davies, A. G. & Linfield, E. H. Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region. Appl. Phys. Lett. 95, 181101 (2009).
TurÄinková, D. et al. Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2â THz. Appl. Phys. Lett. 99, 191104 (2011).
Faist, J. Quantum Cascade Lasers (Oxford Univ. Press, 2013).
Griffiths, P. R. & deâ Haset, J. A. Fourier Transform Infrared Spectroscopy 2nd edn (Wiley-Interscience, 2007).
Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766â768 (2002).
Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).
Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nature Commun. 5, 5192 (2014).
Fan, W. H. et al. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy. Appl. Spectrosc. 61, 638â643 (2007).
Burnett, A. D. et al. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst 134, 1658â1668 (2009).
Leahy-Hoppa, M., Fitch, M. & Osiander, R. Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 395, 247â257 (2009).
Hübers, H.-W., Eichholz, R., Pavlov, S. & Richter, H. High resolution terahertz spectroscopy with quantum cascade lasers. J. Infrared Millim Terahertz Waves 34, 325â341 (2013).
Wang, Y., Soskind, M. G., Wang, W. & Wysocki, G. High-resolution multi-heterodyne spectroscopy based on FabryâPerot quantum cascade lasers. Appl. Phys. Lett. 104, 031114 (2014).
Acknowledgements
The presented work is part of EU research project TERACOMB (call identifier FP7-ICT-2011-C, project no. 296500). The funding from SNF under the Project 200020_152962 is acknowledged. FIRST lab is also acknowledged. The authors acknowledge discussions with G. Villares, A. Hugi and S. Barbieri. The authors thank C. Bonzon for help with FE simulations. The use of the Schottky detector owned by S. Barbieri is acknowledged.
Author information
Authors and Affiliations
Contributions
M.R. fabricated the quantum cascade lasers, performed experiments, analysed data, developed the simulations and wrote the paper together with G.S. G.S. designed the quantum cascade lasers, designed and performed experiments, analysed data, developed the simulations and wrote the manuscript together with M.R. M.B. grew the quantum cascade laser material used for this work. J.F. designed the experiments, analysed the data and supervised the work.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2424 kb)
Rights and permissions
About this article
Cite this article
Rösch, M., Scalari, G., Beck, M. et al. Octave-spanning semiconductor laser. Nature Photon 9, 42â47 (2015). https://doi.org/10.1038/nphoton.2014.279
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2014.279
This article is cited by
-
Passive mode-locking and terahertz frequency comb generation in resonant-tunneling-diode oscillator
Nature Communications (2022)
-
Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation
Nature Communications (2022)
-
Planarized THz quantum cascade lasers for broadband coherent photonics
Light: Science & Applications (2022)
-
High-power portable terahertz laser systems
Nature Photonics (2021)
-
Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser
Light: Science & Applications (2021)