Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan®- and Foslip®-based photodynamic treatment in human biliary tract cancer cell lines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Due to the poor prognosis and limited management options for perihilar cholangiocarcinoma (CC) the development of alternatives for treatment is an important topic. Photodynamic therapy (PDT) with porfimer as palliative or neoadjuvant endoscopic treatment of non-resectable perihilar CC has improved quality of life and survival time, but cannot eradicate the primary tumors because of inadequate tumoricidal depth (4 mm only around the tumor stenoses). The use of meta-tetrahydroxyphenyl chlorin (mTHPC) and photoactivation at higher wavelengths (650-660 nm) provides high tumoricidal depth (10 mm) for PDT of pancreatic cancer and should yield similar tumoricidal depth in CC. This study investigates the photodynamic characteristics of mTHPC in solvent-based formulation (Foscan®) and in liposomal (water soluble) formulation (Foslip®) in an in vitro model system consisting of two biliary cancer cell lines (GBC, gall bladder cancer and BDC, bile duct cancer cells). Dark toxicity, photodynamic efficiency, time-dependent uptake and retention and intracellular localization of Foscan® and Foslip® were studied. The results prove mTHPC as a potent photosensitizing agent with high phototoxic potential in biliary cancer cells as a concentration of 600 ng ml−1 and irradiation with 1.5 J cm−2 (660 ± 10 nm) is sufficient for about 90% cell killing. Addition of foetal bovine serum (FBS) to the incubation medium and analysis of the uptake and phototoxic properties reveals that both photosensitizer formulations bind to serum protein fractions, i.e. no difference between Foscan® and Foslip® can be found in the presence of FBS. Laser scanning fluorescence microscopy indicates a similar pattern of perinuclear localization of both sensitizers. This study demonstrates the potential of mTHPC for treatment of bile duct malignancies and provides evidence that Foslip® is an equivalent water-soluble formulation of mTHPC that should ease intravenous application and thus clinical use of mTHPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. de Groen, G. Gores, N. LaRusso, L. Gunderson and D. Nagorney, Biliary Tract Cancers. N. Engl. J. Med. 1999 341 1368–1378.

    PubMed  Google Scholar 

  2. L. Ayaru, S. G. Bown and S. P. Pereira, Photodynamic therapy for pancreatic and biliary tract carcinoma Int. J. Gastrointest. Cancer 2005 35 1–13.

    Article  PubMed  Google Scholar 

  3. K. N. Lazaridis and G. J. Gores, Cholangiocarcinoma Gastroenterology 2005 128 1655–1667.

    Article  PubMed  Google Scholar 

  4. G. D. Leonard, E. M. O’Reilly, Biliary tract cancers: current concepts and controversies Expert. Opin. Pharmacother. 2005 6 211–223.

    Article  PubMed  Google Scholar 

  5. M. Hejna, M. Pruckmayer and M. Raderer, The role of chemotherpy and radiation in the management of biliary cancer: a review of the literature Eur. J. Cancer 1998 34 977–986.

    Article  CAS  PubMed  Google Scholar 

  6. F. Berr, Photodynamic therapy for cholangiocarcinoma Semin. Liver Dis. 2004 24 177–187.

    Article  PubMed  Google Scholar 

  7. M. E. Ortner, K. Caca, F. Berr, J. Liebetruth, U. Mansmann, D. Huster, W. Voderholzer, G. Schachschal, J. Mossner and H. Lochs, Successful photodynamic therapy for nonresectable cholangiocarcinoma: a randomized prospective study Gastroenterology 2003 125 1355–1363.

    Article  PubMed  Google Scholar 

  8. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment Lancet Oncol. 2004 5 497–508.

    Article  CAS  PubMed  Google Scholar 

  9. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer Nat. Rev. Cancer 2003 3 380–387.

    Article  CAS  PubMed  Google Scholar 

  10. K. Plaetzer, T. Kiesslich, T. Verwanger and B. Krammer, The Modes of Cell Death Induced by PDT: An Overview Med. Laser Appl. 2003 18 7–19.

    Article  Google Scholar 

  11. K. Plaetzer, T. Kiesslich, C. B. Oberdanner and B. Krammer, Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection Curr. Pharm. Des. 2005 11 1151–1165.

    Article  CAS  PubMed  Google Scholar 

  12. F. Berr, A. Tannapfel, P. Lamesch, S. Pahernik, M. Wiedmann, U. Halm, A. E. Goetz, J. Mossner and J. Hauss, Neoadjuvant photodynamic therapy before curative resection of proximal bile duct carcinoma J. Hepatol. 2000 32 352–357.

    Article  CAS  PubMed  Google Scholar 

  13. M. Wiedmann, K. Caca, F. Berr, I. Schiefke, A. Tannapfel, C. Wittekind, J. Mossner, J. Hauss and H. Witzigmann, Neoadjuvant photodynamic therapy as a new approach to treating hilar cholangiocarcinoma: a phase II pilot study Cancer 2003 97 2783–2790.

    Article  PubMed  Google Scholar 

  14. S. G. Bown, A. Z. Rogowska, D. E. Whitelaw, W. R. Lees, L. B. Lovat, P. Ripley, L. Jones, P. Wyld, A. Gillams and A. W. Hatfield, Photodynamic therapy for cancer of the pancreas Gut 2002 50 549–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. P. P. Purdum, 3rd, A. Ulissi, P. B. Hylemon, M. L. Shiffman and E. W. Moore, Cultured human gallbladder epithelia. Methods and partial characterization of a carcinoma-derived model Lab. Invest. 1993 68 345–353.

    CAS  PubMed  Google Scholar 

  16. M. Oertel, S. I. Schastak, A. Tannapfel, R. Hermann, U. Sack, J. Mossner and F. Berr, Novel bacteriochlorine for high tissue-penetration: photodynamic properties in human biliary tract cancer cells in vitro and in a mouse tumour model J. Photochem. Photobiol., B 2003 71 1–10.

    Article  CAS  Google Scholar 

  17. A. Pieslinger, K. Plaetzer, C. B. Oberdanner, J. Berlanda, H. Mair, B. Krammer and T. Kiesslich, Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: A possible low-cost supplement to conventional light sources for photodynamic treatment Med. Laser Appl. 2006 21 277–283.

    Article  Google Scholar 

  18. R. J. Gonzalez and J. B. Tarloff, Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity Toxicol. In Vitro 2001 15 257–259.

    Article  CAS  PubMed  Google Scholar 

  19. J. Berlanda, T. Kiesslich, C. B. Oberdanner, F. J. Obermair, B. Krammer and K. Plaetzer, Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells J. Environ. Pathol. Toxicol. Oncol. 2006 25 173–188.

    Article  CAS  PubMed  Google Scholar 

  20. M. A. Ortner, J. Liebetruth, S. Schreiber, M. Hanft, U. Wruck, V. Fusco, J. M. Muller, H. Hortnagl and H. Lochs, Photodynamic therapy of nonresectable cholangiocarcinoma Gastroenterology 1998 114 536–542.

    Article  CAS  PubMed  Google Scholar 

  21. T. Zoepf, R. Jakobs, J. C. Arnold, D. Apel, A. Rosenbaum and J. F. Riemann, Photodynamic therapy for palliation of nonresectable bile duct cancer-preliminary results with a new diode laser system Am. J. Gastroenterol. 2001 96 2093–2097.

    Article  CAS  PubMed  Google Scholar 

  22. F. Berr, M. Wiedmann, A. Tannapfel, U. Halm, K. R. Kohlhaw, F. Schmidt, C. Wittekind, J. Hauss and J. Mossner, Photodynamic therapy for advanced bile duct cancer: evidence for improved palliation and extended survival Hepatology 2000 31 291–298.

    Article  CAS  PubMed  Google Scholar 

  23. F. L. Dumoulin, T. Gerhardt, S. Fuchs, C. Scheurlen, M. Neubrand, G. Layer and T. Sauerbruch, Phase II study of photodynamic therapy and metal stent as palliative treatment for nonresectable hilar cholangiocarcinoma Gastrointest. Endosc. 2003 57 860–867.

    Article  PubMed  Google Scholar 

  24. A. Rumalla, T. H. Baron, K. K. Wang, G. J. Gores, L. M. Stadheim, P. C. de Groen, Endoscopic application of photodynamic therapy for cholangiocarcinoma Gastrointest. Endosc. 2001 53 500–504.

    Article  CAS  PubMed  Google Scholar 

  25. K. Plaetzer, T. Kiesslich, B. Krammer and P. Hammerl, Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT Photochem. Photobiol. Sci. 2002 1 172–177.

    Article  CAS  PubMed  Google Scholar 

  26. R. R. Allison, G. H. Downie, R. Cuenca, X.-H. Hu, C. J. Childs and C. H. Sibata, Photosensitizers in clinical PDT Photodiagn. Photodyn. Ther. 2004 1 27–42.

    Article  CAS  Google Scholar 

  27. L. Morlet, V. Vonarx-Coinsmann, P. Lenz, M. T. Foultier, L. X. de Brito, C. Stewart and T. Patrice, Correlation between meta(tetrahydroxyphenyl)chlorin (m-THPC) biodistribution and photodynamic effects in mice J. Photochem. Photobiol., B 1995 28 25–32.

    Article  CAS  Google Scholar 

  28. Q. Peng, J. Moan, L. W. Ma and J. M. Nesland, Uptake, localization, and photodynamic effect of meso-tetra(hydroxyphenyl)porphine and its corresponding chlorin in normal and tumor tissues of mice bearing mammary carcinoma Cancer Res. 1995 55 2620–2626.

    CAS  PubMed  Google Scholar 

  29. F. Wierrani, D. Fiedler, G. Schnitzhofer, J. C. Stewart, K. Gharehbaghi, M. Henry, W. Grin, W. Grunberger and B. Krammer, A new approach to cancer therapy due to appropriate uptake and retention kinetics of meta-tetrahydroxy-phenylchlorin in a human fibroblast cell line Cancer Biochem. Biophys. 1996 15 171–176.

    CAS  PubMed  Google Scholar 

  30. H. J. Hopkinson, D. I. Vernon and S. B. Brown, Identification and partial characterization of an unusual distribution of the photosensitizer meta-tetrahydroxyphenyl chlorin (temoporfin) in human plasma Photochem. Photobiol. 1999 69 482–488.

    Article  CAS  PubMed  Google Scholar 

  31. D. Kessel, Transport and localisation of m-THPC in vitro Int. J. Clin. Pract. 1999 53 263–267.

    CAS  PubMed  Google Scholar 

  32. A. T. Michael-Titus, R. Whelpton and Z. Yaqub, Binding of temoporfin to the lipoprotein fractions of human serum Br. J. Clin. Pharmacol. 1995 40 594–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Sasnouski, V. Zorin, I. Khludeyev, M. A. D’Hallewin, F. Guillemin and L. Bezdetnaya, Investigation of Foscan interactions with plasma proteins Biochim. Biophys. Acta 2005 1725 394–402.

    Article  CAS  PubMed  Google Scholar 

  34. T. J. Dougherty, Photosensitizers: therapy and detection of malignant tumors Photochem. Photobiol. 1987 45 879–889.

    Article  CAS  PubMed  Google Scholar 

  35. R. A. Firestone, Low-density lipoprotein as a vehicle for targeting antitumor compounds to cancer cells Bioconjugate Chem. 1994 5 105–113.

    Article  CAS  Google Scholar 

  36. W. N. Leung, X. Sun, N. K. Mak and C. M. Yow, Photodynamic effects of mTHPC on human colon adenocarcinoma cells: photocytotoxicity, subcellular localization and apoptosis Photochem. Photobiol. 2002 75 406–411.

    Article  CAS  PubMed  Google Scholar 

  37. V. O. Melnikova, L. N. Bezdetnaya, C. Bour, E. Festor, M. P. Gramain, J. L. Merlin, A. Potapenko and F. Guillemin, Subcellular localization of meta-tetra (hydroxyphenyl) chlorin in human tumor cells subjected to photodynamic treatment J. Photochem. Photobiol., B 1999 49 96–103.

    Article  CAS  Google Scholar 

  38. M. H. Teiten, L. Bezdetnaya, P. Morliere, R. Santus and F. Guillemin, Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells Br. J. Cancer 2003 88 146–152.

    Article  PubMed  PubMed Central  Google Scholar 

  39. M. H. Teiten, S. Marchal, M. A. D’Hallewin, F. Guillemin and L. Bezdetnaya, Primary photodamage sites and mitochondrial events after Foscan photosensitization of MCF-7 human breast cancer cells Photochem. Photobiol. 2003 78 9–14.

    Article  CAS  PubMed  Google Scholar 

  40. C. M. Yow, J. Y. Chen, N. K. Mak, N. H. Cheung and A. W. Leung, Cellular uptake, subcellular localization and photodamaging effect of temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative Cancer Lett. 2000 157 123–131.

    Article  CAS  PubMed  Google Scholar 

  41. J. Y. Chen, N. K. Mak, C. M. Yow, M. C. Fung, L. C. Chiu, W. N. Leung and N. H. Cheung, The binding characteristics and intracellular localization of temoporfin (mTHPC) in myeloid leukemia cells: phototoxicity and mitochondrial damage Photochem. Photobiol. 2000 72 541–547.

    Article  CAS  PubMed  Google Scholar 

  42. T. H. Foster, B. D. Pearson, S. Mitra and C. E. Bigelow, Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope Photochem. Photobiol. 2005 81 1544–1547.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Berr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiesslich, T., Berlanda, J., Plaetzer, K. et al. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan®- and Foslip®-based photodynamic treatment in human biliary tract cancer cell lines. Photochem Photobiol Sci 6, 619–627 (2007). https://doi.org/10.1039/b617659c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617659c