Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs; ca. 4 nm) were synthesised and functionalised with a mixed monolayer of polyethylene glycol (PEG) and one of two zinc phthalocyanines (ZnPcs), the difference between the two molecules was the length of the carbon chain that connects the Pc to the gold core. The chain was composed of either three (C3Pc) or eleven (C11Pc) carbon atoms. The C11Pc photosensitiser displayed higher fluorescence emission intensity than the C3Pc in solution. By contrast, the C3Pc photosensitiser exhibited higher fluorescence when bound to the surface of the AuNPs than the C11Pc, despite the shorter carbon chain which was expected to quench the fluorescence. In addition, the C3Pc nanoparticle conjugates exhibited an enhancement in the production of singlet oxygen (1O2). The metal-enhanced 1O2 production led to a remarkable photodynamic efficacy for the treatment of human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Imaging and photo- dynamic therapy: Mechanisms, monitoring and optimiz- ation, Chem. Rev., 2010, 110, 2795–2838.

    Article  CAS  Google Scholar 

  2. D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    CAS  Google Scholar 

  3. G. Obaid, I. Chambrier, M. J. Cook and D. A. Russell, Targeting the oncofetal Thomsen-Friedenreich disacchar- ide using jacalin-PEG phthalocyanine gold nanoparticles for photodynamic cancer therapy, Angew. Chem., Int. Ed., 2012, 51, 6158–6162.

    Article  CAS  Google Scholar 

  4. G. Obaid, I. Chambrier, M. J. Cook and D. A. Russell, Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles, Photochem. Photobiol. Sci., 2015, 14, 737–747.

    Article  CAS  Google Scholar 

  5. S. Wang, R. Gao, F. Zhou and M. Selke, Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy, J. Mater. Chem., 2004, 14, 487–493.

    Article  CAS  Google Scholar 

  6. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  7. D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook and D. A. Russell, Generation of cytotoxic singlet oxygen via phthalocyanine- stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy, Langmuir, 2002, 18, 2985–2987.

    Article  CAS  Google Scholar 

  8. T. Stuchinskaya, M. Moreno, M. J. Cook, D. R. Edwards and D. A. Russell, Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nano- particle conjugates, Photochem. Photobiol. Sci., 2011, 10, 822–831.

    Article  CAS  Google Scholar 

  9. C. D. Geddes and J. R. Lakowicz, Metal-enhanced fluo- rescence, J. Fluoresc., 2002, 12, 121–129.

    Article  Google Scholar 

  10. W. Deng, F. Xie, H. T. M. C. M. Baltar and E. M. Goldys, Metal-enhanced fluorescence in the life sciences: here, now and beyond, Phys. Chem. Chem. Phys., 2013, 15, 15695–15708.

    Article  CAS  Google Scholar 

  11. J. R. Lakowicz, Radiative decay engineering 5: metal- enhanced fluorescence and plasmon emission, Anal. Biochem., 2005, 337, 171–194.

    Article  CAS  Google Scholar 

  12. J. R. Lakowicz, Radiative decay engineering: biophysical and biomedical applications, Anal. Biochem., 2001, 298, 1–24.

    Article  CAS  Google Scholar 

  13. S. K. Ghosh and T. Pal, Photophysical aspects of molecular probes near nanostructured gold surfaces, Phys. Chem. Chem. Phys., 2009, 11, 3831–3844.

    Article  CAS  Google Scholar 

  14. A. Kotiaho, R. Lahtinen, A. Efimov, H. K. Metsberg, E. Sariola, H. Lehtivuori, N. V. Tkachenko and H. Lemmetyinen, Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles, J. Phys. Chem. C, 2010, 114, 162–168.

    Article  CAS  Google Scholar 

  15. Y. Zhang, B. L. Mali and C. D. Geddes, Metal-enhanced fluorescence exciplex emission, Spectrochim. Acta, Part A, 2012, 85, 134–138.

    Article  CAS  Google Scholar 

  16. Y. Zhang, K. Aslan, M. J. R. Previte and C. D. Geddes, Metal-enhanced singlet oxygen generation: a consequence of plasmon enhanced triplet yields, J. Fluoresc., 2007, 17, 345–349.

    Article  CAS  Google Scholar 

  17. Y. Zhang, K. Aslan, M. J. R. Previte and C. D. Geddes, Plasmonic engineering of singlet oxygen generation, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 1798–1802.

    Article  CAS  Google Scholar 

  18. Y. Zhang, K. Aslan, M. J. R. Previte, S. N. Malyn and C. D. Geddes, Metal-enhanced phosphorescence: interpret- ation in terms of triplet-coupled radiating plasmons, J. Phys. Chem. B, 2006, 110, 25108–25114.

    Article  CAS  Google Scholar 

  19. O. Planas, N. Macia, M. Agut, S. Nonell and B. Heyne, Distance-dependent plasmon-enhanced singlet oxygen pro- duction and emission for bacterial inactivation, J. Am. Chem. Soc., 2016, 138, 2762–2768.

    Article  CAS  Google Scholar 

  20. J. Karolin and C. D. Geddes, Metal-enhanced fluorescence based excitation volumetric effect of plasmon-enhanced singlet oxygen and super oxide generation, Phys. Chem. Chem. Phys., 2013, 15, 15740–15745.

    Article  CAS  Google Scholar 

  21. X. Huang, X.-J. Tian, W.-L. Yang, B. Ehrenberg and J.-Y. Chen, The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photo- dynamic therapy of cancers, Phys. Chem. Chem. Phys., 2013, 15, 15727–15733.

    Article  CAS  Google Scholar 

  22. X. L. Hu, Y. Zang, J. Li, G. R. Chen, T. D. James, X. P. He and H. Tian, Targeted multimodal theranostics via bio- recognition controlled aggregation of metallic nanoparticle composites, Chem. Sci., 2016, 7, 4004–4008.

    Article  CAS  Google Scholar 

  23. P. García Calavia, I. Chambrier, M. J. Cook, A. H. Haines, R. A. Field and D. A. Russell, Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles, J. Colloid Interface Sci., 2018, 512, 249–259.

    Article  Google Scholar 

  24. I. Chambrier, M. J. Cook and D. A. Russell, Synthesis and characterisation of functionalised phthalocyanine com- pounds for fabrication of self-assembled monolayers, Synthesis, 1995, 1283–1286.

    Google Scholar 

  25. D. J. Revell, I. Chambrier, M. J. Cook and D. A. Russell, Formation and spectroscopic characterisation of self- assembled phthalocyanine monolayers, J. Mater. Chem., 2000, 10, 31–37.

    Article  CAS  Google Scholar 

  26. M. C. Staniford, M. M. Lezhnina, M. Gruener, L. Stegemann, R. Kuczius, V. Bleicher, C. A. Strassert and U. H. Kynast, Photophysical efficiency boost of aqueous aluminium phthalocyanine by hybrid formation with nano- clays, Chem. Commun., 2015, 51, 13534–13537.

    Article  CAS  Google Scholar 

  27. C. A. Belmokhtar, J. Hillion and E. Segal-Bendirdjian, Staurosporine induces apoptosis through both caspase- dependent and caspase-independent mechanisms, Oncogene, 2001, 20, 3354–3362.

    Article  CAS  Google Scholar 

  28. L. Rodriguez, P. Vallercosa, S. Battah, G. Di Venosa, G. Calvo, L. Mamone, D. Saenz, M. C. Gonzalez, A. Batlle, A. J. MacRobert and A. Casas, Aminolevulinic acid dendri- mers in photodynamic treatment of cancer and atheroma- tous disease, Photochem. Photobiol. Sci., 2015, 14, 1617–1627.

    Article  CAS  Google Scholar 

  29. P. Anger, P. Bharadwajand L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., 2006, 96, 1130021–1130024.

    Article  Google Scholar 

  30. K. A. Kang, J. Wang, J. B. Jasinski and S. Achilefu, Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement, J. Nanobiotechnol., 2011, 9, 16–29.

    Article  CAS  Google Scholar 

  31. G. Battistini, P. G. Cozzi, J. P. Jalkanen, M. Montalti, L. Prodi, N. Zaccheroni and F. Zerbetto, The erratic emis- sion of pyrene on gold nanoparticles, ACS Nano, 2008, 2, 77–84.

    Article  CAS  Google Scholar 

  32. M. Wang, L. Huang, S. K. Sharma, S. Jeon, S. Thota, F. F. Sperandio, S. Nayka, J. Chang, M. R. Hamblin and L. Y. Chiang, Synthesis and photodynamic effect of new highly photostable decacationically armed [60]- and [70] Fullerene decaiodide monoadducts to target pathogenic bacteria and cancer cells, J. Med. Chem., 2012, 55, 4274–4285.

    Article  CAS  Google Scholar 

  33. A. Banerjee, P. Majumder, S. Sanyal, J. Singh, K. Jana, C. Das and D. Dasgupta, The DNA intercalators ethidium bromide and propidium iodide also bind to core histones, FEBS Open Bio, 2014, 4, 251–259.

    Article  CAS  Google Scholar 

  34. N. P. Gabrielson and D. W. Pack, Acetylation of polyethyl- enimine enhances gene delivery via weakened polymer/ DNA interactions, Biomacromolecules, 2006, 7, 2427–2435.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the School of Chemistry, University of East Anglia for a studentship for PGC. The assistance of Dr Paul Thomas and Dr Colin MacDonald with the confocal microscope and TEM, respectively, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Russell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Calavia, P., Marín, M.J., Chambrier, I. et al. Towards optimisation of surface enhanced photodynamic therapy of breast cancer cells using gold nanoparticle-photosensitiser conjugates. Photochem Photobiol Sci 17, 281–289 (2018). https://doi.org/10.1039/c7pp00225d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00225d