Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Undersowing wheat with different living mulches in a no-till system. I. Yield analysis

  • Original Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The classical management of no-till wheat has several environmental and economic drawbacks such as the use and cost of herbicides, and the degradation of soil physical quality. Recent investigations suggest that undersowing crops with a living mulch could be a sustainable alternative. Therefore, we studied during three growing seasons the effect of undersowing wheat with living mulches on wheat grain yield. Treatments were wheat grown on a conventionally-tilled soil, on a no-till soil, and on a no-till soil with various living mulches. The living mulches were red fescue, sheep’s fescue, alfalfa, bird’s-foot-trefoil, black medic and white clover. Our results show that the use of living muches during wheat cropping decreased wheat yield of 19–81% by comparison with wheat cropped alone. This decrease is linked to the biomass of living mulches and weeds at the time of flowering. As a consequence, the control of living mulch and weed biomass is a major issue. Our findings also reveal that the wheat yield decrease is mainly the consequence of a decrease in grain number from 37 to 32 grains per spike on average, and of a decrease in spike number from 0.7 to 0.4 spikes per stem. We thus conclude that stem elongation, flowering and fecundation are the major stages of stress for wheat grown with living mulches. Our findings will help to design innovative crop management systems that take into account the biological interactions in agro-ecosystems better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anken T., Weisskopf P., Zihlmann U., Forrer H., Jansa J., Perhacova K., (2004) Long-term tillage system effects under moist cool conditions in Switzerland, Soil Till. Res. 78, 171–183.

    Article  Google Scholar 

  • Bàrberi P., Lo Cascio B. (2001) Long-term tillage and crop rotation effects on weed seedbank size and composition, Weed Res. 41, 325–340.

    Article  Google Scholar 

  • Basic F., Kisic I., Mesic M., Nestroy O., Butorac A. (2004) Tillage and crop management effects on soil erosion in central Croatia, Soil Till. Res. 78, 197–206.

    Article  Google Scholar 

  • Baumhardt R.L., Jones O.R. (2002) Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas, Soil Till. Res. 68, 71–82.

    Article  Google Scholar 

  • Carof M., de Tourdonnet S., Saulas P., Le Floch D., Roger-Estrade J. (2007) Undersowing wheat with different living mulches in a no-till system II. Competition for light and nitrogen, Agron. Sustain. Dev. 27, 357–365.

    Article  Google Scholar 

  • Demotes-Mainard S., Doussunault G., Meynard J.-M. (1995) Effects of low radiation and low temperature at meiosis on pollen viability and grain set in wheat, Agronomie 15, 357–365.

    Article  Google Scholar 

  • Donaldson E., Schillinger W.F., Dofing S.M. (2001) Straw production and grain yield relationships in winter wheat, Crop Sci. 41, 100–106.

    Article  Google Scholar 

  • FAO-UNESCO (1974) Soil map of the world, 1:5 000 000, FAO, Roma (Italy).

    Google Scholar 

  • Ferreras L.A., Costa J.L., Garcia F.O., Pecorari C. (2000) Effects of no-tillage on some soil physical properties of a structural degraded Petrocalcic Paleudoll of the southern “Pampa” of Argentina, Soil Till. Res. 54, 31–39.

    Article  Google Scholar 

  • Ferron P., Deguine J.-P. (2005) Crop protection, biological control, habitat management and integrated farming. A review, Agron. Sustain. Dev. 25, 17–24.

    Article  Google Scholar 

  • Gooding M.J., Dimmock J.P.R.E., France J., Jones S.A. (2000) Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield, Ann. Appl. Biol. 136, 77–84.

    Article  CAS  Google Scholar 

  • Hartwig N.L., Ammon H.U. (2002) Cover crops and living mulches, Weed Sci. 50, 688–699.

    Article  CAS  Google Scholar 

  • Hatfield J.L., Karlen D.L. (1994) Sustainable agricultural systems, Lewis Publishers, CRC Press, Boca Raton, USA.

    Google Scholar 

  • Hemmat A., Eskandari I. (2004) Tillage system effects upon productivity of a dryland winter wheat-chickpea rotation in the northwest region of Iran, Soil Till. Res. 78, 69–81.

    Article  Google Scholar 

  • Holland J.M. (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence, Agr. Ecosyst. Environ. 103, 1–25.

    Article  Google Scholar 

  • Humphries A.W., Latta R.A., Auricht G.C., Bellotti WD. (2004) Overcropping lucerne with wheat: effect of lucerne winter activity on total plant production and water use of the mixture, and wheat yield and quality, Aust. J. Agr. Res. 55, 839–848.

    Article  Google Scholar 

  • Jeuffroy M.-H., Bouchard C. (1999) Intensity and duration of nitrogen deficiency on wheat grain number, Crop Sci. 39, 1385–1393.

    Article  Google Scholar 

  • Kinsella J. (1995) The effects of various tillage systems on soil compaction, in: Soil and Water Conservation Society (Ed.), Farming for a better environment, ankeny, USA, pp. 15–17.

    Google Scholar 

  • Lacas J.-G., Voltz M., Gouy V., Carluer N., Gril J.-J. (2005) Using grassed stips to limit pesticide transfer to surface water: a review, Agron. Sustain. Dev. 25, 253–266.

    Article  CAS  Google Scholar 

  • Lampurlanès J., Cantero-Martínez C. (2003) Soil bulk density and penetration resistance under different tillage and crop management systems and their relationship with barley root growth, Agron. J. 95, 526–536.

    Article  Google Scholar 

  • Leterme P., Manichon H., Roger-Estrade J. (1994) Yield analysis of wheat grown in an on-farm field network in Thymerais (France), Agronomie 14, 341–361.

    Article  Google Scholar 

  • Masle J. (1981a) Élaboration du nombre d’épis d’un peuplement de blé d’hiver en situation de compétition pour l’azote. I. Mise en évidence d’un stade critique pour la montée d’une talle, Agronomie 1, 623–632.

    Article  Google Scholar 

  • Masle J. (1981b) Relations entre croissance et développement pendant la montaison d’un peuplement de blé d’hiver. Influence des conditions de nutrition, Agronomie 1, 365–374.

    Article  Google Scholar 

  • McMaster G.S., Wilhelm W.W., Bartling P.N.S. (1994) Irrigation and culm contribution to yield and yield components of winter wheat, Agron. J. 86, 1123–1127.

    Article  Google Scholar 

  • Meynard J.-M., David G. (1992) Diagnosis of crop yield elaboration, Cah. Agr. 1, 9–19.

    Google Scholar 

  • Nakamoto T., Tsukamoto M. (2006) Abundance and activity of soil organisms in fields of maize grown with a white clover living mulch, Agr. Ecosyst. Environ. 115, 34–42.

    Article  Google Scholar 

  • Norwood C.A. (2000) Dryland winter wheat as affected by previous crops, Agron. J. 92, 121–127.

    Google Scholar 

  • Rémy J.C., Hébert J. (1977), Le devenir des engrais azotés dans le sol, Comptes-rendus de l’Académie d’Agriculture Française 63, 700–710.

    Google Scholar 

  • Samarajeewa K.B.D.P., Horiuchi T., Oba S. (2005) Weed population dynamics in wheat as affected by Astragalus sinicus L. (Chinese milk vetch) under reduced tillage, Crop Prot. 24, 864–869.

    Article  Google Scholar 

  • Sánchez-Gíron V., Serrano A., Hernánz J.L., Navarrete L. (2004) Economic assessment of three long-term tillage systems for rain-fed cereal and legume production in semiarid central Spain, Soil Till. Res. 78, 35–44.

    Article  Google Scholar 

  • SAS Istitute Inc. (1999) SAS OnlineDoc®Version 8, SAS Institute Cary, NC.

    Google Scholar 

  • Scopel E., Findeling A., Chavez Guerra E., Corbeels M. (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield, Agron. Sustain. Dev. 25, 425–432.

    Article  CAS  Google Scholar 

  • Teasdale J.R. (1996) Contribution of cover crops to weed management in sustainable agricultural systems, J. Prod. Agr. 9, 475–479.

    Google Scholar 

  • Tebrügge F., Düring R.A. (1999) Reducing tillage — a review of results from a long-term study in Germany, Soil Till. Res. 53, 15–28.

    Article  Google Scholar 

  • Thorsted M.D., Olesen J., Weiner J. (2006) Mechanical control of clover improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping, Eur. J. Agron. 24, 149–155.

    Article  CAS  Google Scholar 

  • White J.G., Scott T.W. (1991) Effects of perennial forage-legume living mulches on no-till winter wheat and rye, Field Crop. Res. 28, 135–148.

    Article  Google Scholar 

  • Wright A.L., Hons F.M. (2005) Tillage impacts on soil aggregation and carbon and nitrogen sequestration under wheat cropping sequences, Soil Till. Res. 84, 67–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane de Tourdonnet.

About this article

Cite this article

Carof, M., de Tourdonnet, S., Saulas, P. et al. Undersowing wheat with different living mulches in a no-till system. I. Yield analysis. Agron. Sustain. Dev. 27, 347–356 (2007). https://doi.org/10.1051/agro:2007016

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro:2007016