Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies

  • Original Article
  • Published:
The European Journal of Development Research Aims and scope Submit manuscript

Abstract

We embed the distributional bargaining concept in Sir Arthur Lewis’s labor surplus economy setting. In the petroleum-abundant labor surplus economies, distributional bargaining comes into its own, mainly over the subsidization of the large swaths of the population working in the sectors with substantial amounts of disguised unemployment. These are primarily the subsistence agriculture and the public sector. Based on the open-loop noncooperative differential game model, we derive three feasible bargaining equilibria, whereby only the antagonistic and the allocation modes are compatible with the setting of inferior institutional quality that dominates most natural-resource-dependent countries. We scrutinize both modes in the framework of the dual economy model and show that political bargaining in the allocation mode unambiguously protracts the process of economic modernization. The outcome of the antagonistic mode for the process of structural change depends on the magnitude of the labor cost increase in this phase. To assess the bargaining–modernization nexus empirically, we employ mostly pooled mean group (PMG) estimators for panel datasets spanning the years 1990–2016 for 21 oil-producing countries. For the system generalized method of moments (GMM) panel estimations, we employ a panel with 82 countries. We find that the revenues generated from exports of natural resources have a positive long-run impact on the economic modernization. Consistent with our theoretical model, the interaction of the authoritarian regime type with the natural resource wealth has a robust negative impact on the indicators of economic modernization.

Résumé

Dans cet article, nous intégrons la notion de négociation distributive dans l’économie disposant d’un surplus main-d’œuvre décrite par Sir Arthur Lewis. Dans les économies qui disposent d’un surplus de main-d’œuvre et qui sont riches en pétrole, les négociations distributives deviennent incontournables, principalement quand il s’agit de financer de larges groupes de population travaillant dans les secteurs caractérisés par un taux de chômage déguisé important. Ce sont principalement le secteur de l’agriculture de subsistance et le secteur public. Sur la base du modèle de jeu différentiel non coopératif en boucle ouverte, nous obtenons trois équilibres de négociation réalisables, dans lesquels seuls les modes antagoniste et d’allocation sont compatibles avec la qualité inférieure des institutions qui domine la plupart des pays dépendant des ressources naturelles. Nous examinons les deux modes par le prisme du modèle de l’économie duale et montrons que la négociation politique dans le mode d’allocation retarde sans aucun doute le processus de modernisation économique. Le résultat du mode antagoniste relatif au processus de changement structurel dépend de l’ampleur de l’augmentation du coût de la main-d’œuvre au cours de cette phase. Pour évaluer empiriquement le lien entre la négociation et la modernisation, nous utilisons principalement les estimations de la moyenne de groupe agrégée (PMG) pour des données de panel couvrant la période de 1990 à 2016 pour 27 pays producteurs de pétrole. Pour les estimations de panel par la méthode des moments généralisés (MMG) en système, nous utilisons un panel de 85 pays. Nous constatons que les revenus générés par les exportations de ressources naturelles ont un impact positif à long terme sur la modernisation économique. Conformément à notre modèle théorique, l’interaction entre des régimes de type autoritaires et la richesse en ressources naturelles a un impact négatif considérable sur les indicateurs de modernisation économique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(cf. Bender 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We refer to authoritarian, distributional, autocratic, and political bargaining interchangeably. This is also the case in our usage of the notions of elite, state elite, and ruling elite, as well as the notions of autocracy, dictatorship, and authoritarian regime.

  2. We do not scrutinize here the relation between this subsistence income level and the concept of the poverty line, or definitions and measurements of subsistence-level consumption. For theoretical discourse on and empirical methodology to determine subsistence-level consumption, see Sharif (1986), Steger (1998, 2000), and Loewenstein and Bender (2017).

  3. For more on the foundations of this compensation system, see Lewis (1954), Bender (2009), Loewenstein and Bender (2017) and Schäfer (1983).

  4. The model does not give a clue about the causes of industrialization. Nevertheless, there are myriad possible causes, which could result in the emergence of capitalist production in a developing country, including FDI which is attracted mainly due to the abundance of labor force, raw materials, existence of unique crops etc., venture capital, foreign aid for the development of local manufacturing, natural resource revenues and their reinvestment in local industrialization, etc.

  5. The additional charge factor of 1.3 has no empirical or theoretical foundations.

  6. For a comprehensive discussion on this assumption, see Sadik-Zada and Loewenstein (2018).

References

  • Acemoglu, D., and J.A. Robinson. 2000a. Why did the west extend the franchise? Democracy, inequality, and growth in historical perspective. The Quarterly Journal of Economics 115 (4): 1167–1199.

    Google Scholar 

  • Acemoglu, D., and J.A. Robinson. 2000b. Democratization or repression? European Economic Review 44 (4–6): 683–693.

    Google Scholar 

  • Aidt, T.S., and G. Leon. 2016. The democratic window of opportunity: Evidence from riots in Sub-Saharan Africa. Journal of Conflict Resolution 60 (4): 694–717.

    Google Scholar 

  • Aidt, T.S., G. Leon, and M. Satchell. 2017. The social dynamics of collective action: Evidence from the Captain Swing Riots, 1830–1831. Cambridge Working Paper Economics 1751. http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1751.pdf. Accessed 29 Oct 2018

  • Apolte, T. 2015. Gordon Tullock’s theory of dictatorship and revolution. Center for Interdisciplinary Economics Discussion Paper 2/2015.

  • Arnot, B. 2016. Gorbachev’s industrial and economic policies: Continuity or change? Politics 8 (1): 3–7.

    Google Scholar 

  • Auty, R.M. 1999. The transition from rent-driven growth to skill-driven growth: Recent experience of five mineral economies. In Development policies in natural resource economies, ed. J. Meyer, B. Chambers, and A. Farooq. Cheltenham: Edward Elgar.

    Google Scholar 

  • Barro R.J., and J.W. Lee. 2013. A new data set of educational attainment in the world, 1950–2010. Journal of Development Economics 104: 184–198.

    Google Scholar 

  • Baum, C., and M.E. Schaffer. 2003. Instrumental variables and GMM: Estimation and testing. The Stata Journal 3 (1): 1–31.

    Google Scholar 

  • Beblawi, H., and G. Luciani. 1987. The rentier state. London: Croom Helm and the Instituto Affari Internationali.

    Google Scholar 

  • Bender, D. 2009. Dualismus, struktureller Wandel und Wirtschaftswachstum in einem Niedrigeinkommensland. IEE Working Paper, vol. 189. Bochum: Ruhr-Universität Bochum.

  • Bender, D. 2012. Structural change, wage formation, and economic growth in low-income countries. IEE Working Paper No. 194. Bochum: Ruhr-Universität Bochum.

  • Blackburne III, E.F., and M.W. Frank. 2007. Estimation of nonstationary heterogenous panels. The Stata Journal 7 (2): 197–208.

    Google Scholar 

  • Bloch, P.C. 1986. The politico-economic behavior of authoritarian governments. Public Choice 51 (2): 117–128.

    Google Scholar 

  • Blundell, R., and S. Bond. 1998. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics 87: 115–143.

    Google Scholar 

  • Brahmbhatt, M., and O. Canuto. 2010. Natural resources and development strategy after the crisis. Economic Premise, February Issue. Washington. Retrieved March 3, 2013 from http://siteresources.worldbank.org/EXTPREMNET/Resources/Economic_Premise1.pdf.

  • Busse, M., and S. Gröning. 2013. The resource curse revisited: Governance and natural resources. Public Choice 154: 1–20.

    Google Scholar 

  • Cardoso, A., and J. Gindin. 2009. Industrial relations and collective bargaining: Argentina, Brazil and Mexico compared. ILO Industrial and Employment Relations Department Working Paper No. 5. http://www.ilo.org/wcmsp5/groups/public/—ed_dialogue/—dialogue/documents/publication/wcms_158020.pdf. Accessed 13 Oct 2018

  • Cavalcanti, T.V.d.V., K. Mohaddes, and M. Raissi. 2011. Does oil abundance harm growth? Applied Economics Letters 18: 1181–1184.

    Google Scholar 

  • Chiang, A.C. 1992. Elements of dynamic optimization. New York: McGraw-Hill.

    Google Scholar 

  • Chudik, A., K. Mohaddes, M.H. Pesaran, and M. Raissi. 2013. Debt, inflation and growth robust estimation of long-run effects in dynamic panel data models. Federal Reserve Bank of Dallas, Globalization and Monetary Policy Institute Working Papers 2013 (162).

  • Collier, R.B. 1992. The contradictory alliance: State–labor relations and regime change in Mexico. Berkeley: University of California Press.

    Google Scholar 

  • Corden, M., and P. Neary. 1982. Booming sector and de-industrialization in a small open economy. The Economic Journal 92: 825–846.

    Google Scholar 

  • de Vries, K., and A.A. Erumban. 2017. Total economy database. A detailed guide to its sources and methods. Conference Board. https://www.conference-board.org/retrievefile.cfm?filename=TED_SMDetailed_nov2017.pdf&type=subsite. Accessed 30 Oct 2018

  • Desai, R.M., A. Olofsgard, and Y.M. Tarek. 2009. The logic of authoritarian bargains. Economics and Politics 21 (1): 93–125.

    Google Scholar 

  • Devarajan, Sh., M.L. Tuan, and R. Gael. 2010. Increasing public efficiency in oil-rich economies. Policy Research Working Paper 5287. World Bank: Washington DC. http://documents.worldbank.org/curated/en/599811468192565752/pdf/WPS5287.pdf. Accessed 10 Oct 2018

  • Diwan, I. 2012. Understanding the revolution in the middle east: The central role of the middle class. Economic Research Forum Working Paper No. 726. http://www.erf.org.eg/CMS/uploads/pdf/726.pdf. Accessed 21 May 2015.

  • Dollery, B., and S. Singh. 1998. A note on the empirical analysis of Wagner’s law. Economic Analysis and Policy 28 (2): 245–257.

    Google Scholar 

  • Dorfman, R. 1969. An economic interpretation of optimal control theory. The American Economic Review 59 (5): 817–831.

    Google Scholar 

  • Eifert, B., A. Gelb, and N.B. Tallroth. 2002. The political economy of fiscal policy and economic management in oil-exporting countries, World Bank Policy Research Working Paper No. 2899. http://documents.worldbank.org/curated/en/247121468766485195/pdf/multi0page.pdf. Accessed 8 Apr 2018

  • Elhorst, P., E. Zandberg, De Haan, J. 2013. The impact of interaction effects among neighbouring countries on financial liberalization and reform: A dynamic spatial panel data approach. Spatial Economic Analysis 8 (3): 293–313.

    Google Scholar 

  • Fei, J.C.H., and G. Ranis. 1964. Development of the labor surplus economy: Theory and policy. The Economic Growth Center Yale University. Homewood, IL: Yale.

    Google Scholar 

  • Feichtinger, G., and R.F. Hartl. 1986. Optimale Kontrolle ökonomischer Prozesse. Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften. Berlin: Walter der Grutyer.

    Google Scholar 

  • Fish, S.M. 2002. Islam and authoritarianism. World Politics 55: 4–37.

    Google Scholar 

  • Freedom House. 2013. Freedom on the Net 2013. Washington, DC: Freedom House. Retrieved October 10, 2013 from http://www.freedomhouse.org/report/freedom-net/freedom-net-2013.

  • Gasiorowski, M. 1995. Economic crisis and political regime change: An event history analysis. American Political Science Review 89: 882–897.

    Google Scholar 

  • Gavin, M. 1993. Adjusting a terms of trade shock: Nigeria 1972–88. In Policymaking in the open economy: Concepts and case studies in economic performance, ed. R. Dornbusch, 172–219. New York: Oxford University Press.

    Google Scholar 

  • Granovetter, M. 1978. Threshold models of collective behavior. American Journal of Sociology 83 (6): 1420–1443.

    Google Scholar 

  • Gurr, T.R. 1970. Why men rebel. Princeton University Press.

  • Haavelmo, T. 2015. Structural models and econometrics. Econometric Theory 31 (1): 85–92.

    Google Scholar 

  • Hertog, S., A. Bodor, and R. Holzmann. 2012. Labor market distortions in oil rentier states: The Citizens’ income and other possible solutions. IZA/World Bank Conference: Employment and Development Conference Proceedings. http://www.iza.org/conference_files/worldb2012. Accessed 14 May 2015

  • Hoel, M. 1978. Distribution and growth as a differential game between workers and capitalists. International Economic Review 19 (2): 335–350.

    Google Scholar 

  • Hondroyiannisi, G., and E. Papapetrou. 1999. An investigation of the public deficits and government spending relationship: evidence from Greece. Public Choice 107 (1–2): 169–182.

    Google Scholar 

  • Hotelling, H. 1931. The economics of exhaustible resources. The Journal of Political Economy 39 (2): 137–175.

    Google Scholar 

  • Hoyod De, R.E., and V. Sarafidis. 2006. Testing for cross-sectional dependence in panel-data models. The Stata Journal 4 (6): 482–496.

    Google Scholar 

  • Huenteler, J., C. Niebuhr, and T. Schmidt. 2014. The effect of local and global learning on the cost of renewable energy in developing countries. Journal for Cleaner Production 128: 6–21.

    Google Scholar 

  • ICTD/UNU-WIDER. 2018. Government Revenue Dataset. Available from https://www.wider.unu.edu/project/government-revenue-dataset.

  • Jules, T.D., and T. Barton. 2018. Educational transitions in post-revolutionary spaces: Islam, security and social movements in Tunisia. London: Bloomsbury Academic.

    Google Scholar 

  • Khanna, N. 2001. On the economics of non-renewable resources. Department of Economics Working Paper No. 0102. https://www.binghamton.edu/economics/research/old-working-papers/docs/WP0102.pdf. Accessed 15 Oct 2018

  • Kuran, T. 1989. Sparks and prairie fires: a theory of unanticipated political revolution. Public Choice 61 (1): 41–74.

    Google Scholar 

  • Kuran, T. 1991a. Now out or never: the element of surprise in the East European revolution of 1989. World Politics 44 (1): 7–48.

    Google Scholar 

  • Kuran, T. 1991b. The East European Revolution of 1989: Is it surprising that we were surprised? The American Economic Review 81 (2): 121–125.

    Google Scholar 

  • Kuran, T. 1995. The inevitability of future revolutionary surprises. American Journal of Sociology 100 (6): 1528–1551.

    Google Scholar 

  • La Porta, R., F. Lopez-de-Silanes, and A. Shleifer. 2008. The economic consequences of legal origins. Journal of Economic Literature 46 (2): 285–332.

    Google Scholar 

  • Lancaster, K. 1973. The dynamic inefficiency of capitalism. Journal of Political Economy 81 (5): 1092–1109.

    Google Scholar 

  • Lewis, A. 1954. Economic development with unlimited supplies of labor. The Manchester School 22: 401-449. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3022146. Accessed 24 Apr 2019

  • Loewenstein, W., and D. Bender. 2017. Labour market failure, capital accumulation, growth and poverty dynamics in partially formalised economies: Why developing countries. Growth patterns are different.

  • Marin-Solano, J., and C. Patxot. 2012. Heterogeneous discounting in economic problems. Optimal Control Applications and Methods 33: 32–50.

    Google Scholar 

  • Mehrling, P.G. 1986. A classical model of class struggle: A game theoretic approach. Journal of Political Economy 94 (6): 1280–1303.

    Google Scholar 

  • Mohaddes, K., and M. Raissi. 2017. Do sovereign wealth funds dampen the negative effects of commodity price volatility? Journal of Commodity Markets 8: 18–27.

    Google Scholar 

  • Muradov, D., Y. Hasanli, and N. Hajiyev. 2019. World market price of oil. Springer: Berlin.

    Google Scholar 

  • O’Neil, P.H. 2010. Essentials of comparative politics. New York: W. W. Norton.

    Google Scholar 

  • Olivier de Sardan, J.P. 1999. A moral economy of corruption in Africa? The Journal of Modern African Studies 37 (1): 25–52.

    Google Scholar 

  • Pesaran, M.H., and R. Smith. 1995. Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics 68 (1): 79–113.

    Google Scholar 

  • Pesaran, M.H., Y. Shin, and R.P. Smith. 1999. Pooled mean group estimation of dynamic heterogenous panels. Journal of American Statistical Association 94 (446): 621–634.

    Google Scholar 

  • Prichard, W., A. Cobham, and A. Goodall. 2014. The ICTD Government Review Dataset. ICTD Working Paper No. 19.

  • Ranis, G., and J. Fei. 1961. A theory of economic development. The American Economic Review 51 (4): 533–565.

    Google Scholar 

  • Robinson, J. 1937. Introduction to the theory of employment. London: Macmillan & Co Limited.

    Google Scholar 

  • Robinson, J., R. Tovrik, and T. Verdier. 2006. Political foundations of the resource curse. Journal of Development Economics 79: 447–468.

    Google Scholar 

  • Ros, J. 2001. Development theory and the economics of growth. Ann Arbor: The University of Michigan Press.

    Google Scholar 

  • Ross, M.L. 2001. Does oil hinder democracy? World Politics 53 (3): 325–361.

    Google Scholar 

  • Sadik-Zada, E.R. 2016. Oil abundance and economic growth. Berlin: Logos Verlag.

    Google Scholar 

  • Sadik-Zada, E.R., and A. Gatto. 2019. Determinants of public debt and the role of energy: A cross-country analysis. FEEM Working Paper No. 1263. https://www.feem.it/m/publications_pages/ndl2019-004.pdf.

  • Sadik-Zada, E.R., and W. Loewenstein. 2018. A note on revenue distribution patterns and rent-seeking incentive. International Journal of Energy Economics and Policy 8 (2): 195–204.

    Google Scholar 

  • Schäfer, H.-B. 1983. Landwirtschaftliche Akkumulationslasten und Industrielle Entwicklung: Analyse und Beschreibung entwicklungspolitischer Optionen in Dualistischen Wirtschaften. Berlin: Springer.

    Google Scholar 

  • Schelling, T.C. 1978. Micromotives and macrobehavior. New York: Norton & Company.

    Google Scholar 

  • Seierstad, A., and K. Sydsaeter. 1993. Optimal control theory with economic applications. Amsterdam: North-Holland.

    Google Scholar 

  • Sharif, M. 1986. The concept and measurement of subsistence: A survey of the literature. World Development 14: 555–577.

    Google Scholar 

  • Solow, R.M. 1974. Intergenerational equity and exhaustible resources. Review of Economic Studies 41: 29–45.

    Google Scholar 

  • Steger, T.M. 1998. Aggregate economic growth with subsistence consumption. Volkswirtschaftliche Diskussionsbeiträge No. 71-98. Siegen: Universität Gesamthochschule Siegen.

  • Steger, T.M. 2000. Economic growth with subsistence consumption. Journal of Development Economics 62: 343–361.

    Google Scholar 

  • Stigler, G. 1945. The cost of subsistence. Journal of Farm Economics 27: 303–314.

    Google Scholar 

  • Strotz, R.H. 1955. Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies 23 (3): 165–180.

    Google Scholar 

  • The Conference Board. 2017. Total Economy Database. Available from https://www.conference-board.org/data/economydatabase.

  • The World Bank. 2018. World Development Indicators|Data. [online] Available at: https://data.worldbank.org/data-catalog/world-development-indicators. Accessed 18 Aug 2017.

  • Tullock, G. 1987. Autocracy. Boston: Kluwer Academic.

    Google Scholar 

  • Vogler-Ludwig, K. 1990. Verdeckte Arbeitslosigkeit in der DDR. ifo Schnelldienst 43 (24): 3–10.

    Google Scholar 

  • Wacker, H., and J.E. Blank. 1999. Ressourcenökonomik Band II: Einführung in die Theorie erschöpfbarer natürlicher Ressourcen. München et al.: R.Oldenbourg Verlag.

  • Wacziarg, R. 2011. The first law of petropolitics. Economica 79: 641–657.

    Google Scholar 

  • Wagner, A. 1893. Grundlegung der Politischen Ökonomie. Teil I: Grundlagen der Volkswirtschaft. Leipzig: C.F. Winter’sche Verlagshandlung.

    Google Scholar 

  • Wiesmeth, H., and N. Hajiyev. 2012. The role of competition advocacy in transition and developing economies. Economic Sciences: Theory and Practice 69 (1): 11–21.

    Google Scholar 

  • Windmeijer, F. 2005. A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics 126 (1): 25–51.

    Google Scholar 

  • Wintrobe, R. 1998. The political economy of dictatorship. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wintrobe, R. 2002. Dictatorship. University of Western Ontario. http://publish.uwo.ca/~rwintrob/WorkingPapers/DICTATORSHIP_SURVEY.pdf. Accessed 28 Oct 2018.

  • Zorob, A. 2012. Sozio-ökonomische Hintergründe der arabischen Proteste. In Arabellions. Zur Vielfalt von Protest und Revolte im Nahen Osten und Nordafrika, ed. Zorob A, 229–256. Wiesbaden: VS Verlag für Sozialwissenschaften.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Professor Wilhelm Loewenstein from Ruhr-Universität Bochum and Dr. Kamiar Mohaddes from the University of Cambridge for their fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadik-Zada Elkhan Richard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A.1: Panel Unit Root for the Dependent and Explanatory Variables, 1990–2016

All countries (27)

Im–Pesaran–Shin test with AIC lag selection criterion

Fisher-type test with AIC lag selection criterion

Pesaran’s panel unit root test in presence of cross-sectional dependence \({\text{lag}}\;{\text{order}} = 4 \times \left( {\frac{26}{100}} \right)^{2/9} \approx 3\)

Order of integration

Statistic

p value

Statistic

p value

Statistic

p value

Manufacturing value added (% GDP)

−3.6388

0.0001

110.1903

−2.4336

−3.2255

5.4069

0.0000

0.0075

0.0000

0.0000

3.431

1.000

I(0)

Manufacturing value added (annual % growth)

−27.4663

0.0000

218.3915

−11.2415

−12.8326

18.5902

0.0000

0.0000

0.0000

0.0000

0.089

0.535

I(0)/I(0)/I(1)

∆Manufacturing value added (annual % growth)

    

−4.316

0.0000

 

Total nonresource revenue (% of GDP)

−0.7344

0.2313

162.7149

−8.2469

−8.6601

11.2715

0.0000

0.0000

0.0000

0.0000

4.955

1.000

I(0)/I(0)/I(1)

∆Total nonresource revenue (% of GDP)

    

−3.101

0.0000

 

Total resource revenue (% of GDP)

0.8688

0.8075

71.2301

−4.1509

−3.9572

3.8118

0.0009

0.0000

0.0001

0.0001

4.803

1.000

I(0)/I(0)/I(1)

∆Total resource revenue (% of GDP)

    

−3.721

0.000

 

Political rights index

−0.9717

Insufficient number of time periods to compute W-t-bar

0.1656

64.2922

−0.9235

−1.0497

1.2053

0.1178

0.1779

0.1479

0.1140

0.369

0.644

I(1)/I(1)/I(1)

∆Political rights index

−26.6504

0.0000

847.2564

−26.3651

−45.9777

77.9813

0.0000

0.0000

0.0000

0.0000

−6.254

0.000

 

Civil liberties index

−3.8964

0.0000

249.9154

−11.3274

−13.1894

18.8520

0.0000

0.0000

0.0000

0.0000

  

I(0)/I(0)/I(1)

∆Civil liberties index

    

−4.201

0.000

 

gLaborquality

−4.4825

0.0000

257.3322

−13.0218

−17.8189

28.1665

0.0000

0.0000

0.0000

0.0000

−3.849

0.000

I(0)/I(0)/I(0)

Oil rents (% of GDP)

−0.4961

0.3099

50.2274

−0.5593

−0.4584

−0.3630

0.6207

0.2880

0.3237

0.6417

−0.410

0.341

I(1)/I(1)/I(1)

∆Oil rents (% of GDP)

−24.4396

0.0000

763.7187

−24.8631

−40.6641

68.2927

0.0000

0.0000

0.0000

0.0000

−4.381

0.0000

 

Official exchange rate (LCU per US$)

6.8524

1.0000

56.8494

−0.0041

−0.3924

0.2742

0.3694

0.4984

0.3477

0.3920

4.264

1.000

I(1)/I(1)/I(1)

∆Official exchange rate (LCU per US$)

−17.2496

0.0000

279.7176

−13.0412

−15.1460

22.3295

0.0000

0.0000

0.0000

0.0000

−3.030

0.001

 

Interaction PR

−4.3499

0.0000

192.3063

−9.5888

−10.2565

13.7582

0.0000

0.0000

0.0000

0.0000

−0.969

0.166

I(0)/I(0)/I(1)

∆InteractionPR

    

−4.382

0.0000

 

InteractionCL

−4.4834

0.0000

198.5403

−9.6032

−10.3289

13.9084

0.0000

0.0000

0.0000

0.0000

−0.997

0.159

I(0)/I(0)/I(1)

∆InteractionCL

    

−4.147

0.000

 

Total resource revenue (as % of GDP)

0.0098

0.5039

50.0442

−0.0797

−0.0060

0.0044

0.4716

0.4682

0.4976

0.4982

  

–/I(1)/I(1)

∆Total resource revenue (as % of GDP)

Insufficient to compute W-t-bar

Insufficient to compute W-t-bar

243.5393

−10.7078

−14.0106

19.3539

0.0000

0.0000

0.0000

0.0000

−3.721

0.000

 

Contribution of labor quality growth to GDP growth

−16.4384

0.0003

459.9353

−17.7686

−27.1345

44.3389

0.0000

0.0000

0.0000

0.0000

t-bar-2.240

Z[t-bar] − 2.343

0.010

I(0)/I(0)/I(1)

Growth of total factor productivity

−11.578

0.0000

1066.3014

−23.8252

−32.2078

49.8213

0.0000

0.0000

0.0000

0.0000

−11.578

0.000

I(0)/I(0)/I(0)

A.2: System-Dynamic Panel GMM, 1990–2016

Dependent variable: growth of the TFP

(1)

(2)

(3)

(4)

(5)

(6)

gTFP

gTFP

gTFP

gTFP

gTFP

gTFP

L.gTFP

0.101

0.0441

0.0399

0.0218

−0.00420

−0.00532

(0.124)

(0.154)

(0.155)

(0.162)

(0.182)

(0.181)

L2.gTFP

0.0554*

0.0178

0.0173

0.00376

0.00188

0.00134

(0.0305)

(0.0429)

(0.0437)

(0.0482)

(0.0564)

(0.0559)

L3.gTFP

0.0223

0.00420

0.00282

−0.0100

−0.0116

−0.0118

(0.0290)

(0.0427)

(0.0432)

(0.0467)

(0.0511)

(0.0510)

L4.gTFP

−0.0431*

−0.0618*

−0.0633*

−0.0595*

−0.0654

−0.0648

(0.0231)

(0.0353)

(0.0351)

(0.0336)

(0.0399)

(0.0398)

L5.gTFP

−0.0665**

−0.103**

−0.108***

−0.0974**

−0.0999*

−0.0995*

(0.0301)

(0.0403)

(0.0413)

(0.0384)

(0.0574)

(0.0572)

L6.gTFP

0.0405

0.0330

0.0274

0.0366

0.0216

0.0219

(0.0287)

(0.0320)

(0.0328)

(0.0333)

(0.0291)

(0.0291)

L7.gTFP

−0.0617**

−0.0721***

−0.0724***

−0.0642**

−0.0659**

−0.0656**

(0.0263)

(0.0278)

(0.0276)

(0.0293)

(0.0322)

(0.0319)

Oil rents (% of GDP)

0.108**

0.143**

0.236***

0.230***

0.235***

0.246**

(0.0545)

(0.0657)

(0.0626)

(0.0603)

(0.0879)

(0.106)

PoliticalRightsFreedomHouse

 

−0.0736

0.140

0.159

0.623

0.617

 

(0.463)

(0.499)

(0.488)

(0.457)

(0.450)

Interaction oil rents and political rights

  

−1.12 × 10−11***

−1.01 × 10−11***

−7.10 × 10−12

−1.01 × 10−11

  

(0)

(0)

(0)

(0)

Time dummy

   

0.151**

0.234*

0.235*

   

(0.0684)

(0.131)

(0.130)

Postsocialist dummy

    

−21.03

−20.90

    

(16.78)

(16.85)

Oil × postsocialist

     

−0.0444

     

(0.147)

Constant

−0.251

−0.0471

−0.681

−2.315

0.720

0.695

(0.417)

(2.045)

(2.185)

(1.939)

(4.457)

(4.491)

Observations

1355

1148

1135

1135

1135

1135

No. of countries

82

81

80

80

80

80

No. of instruments

275

205

206

207

207

208

Arellano–Bond testa

0.7797

0.3270

0.2431

0.2646

0.2936

0.2919

  1. Robust standard errors in parentheses
  2. ***p < 0.01, **p < 0.05, *p < 0.1
  3. aArellano–Bond test that second-order autocorrelation in residuals is 0; first-order autocorrelation is always present (not reported)

A.3: System-Dynamic Panel GMM, 1990–2001

Variable

(1)

(2)

(3)

(4)

(5)

(6)

gTFP

gTFP

gTFP

gTFP

gTFP

gTFP

L.gTFP

0.0174

0.0247

0.0276

0.00790

−0.0305

−0.0422

(0.143)

(0.141)

(0.147)

(0.151)

(0.131)

(0.130)

L2.gTFP

−0.154*

−0.154*

−0.151

−0.150

−0.146

−0.149

(0.0892)

(0.0898)

(0.0963)

(0.0968)

(0.0945)

(0.0950)

L3.gTFP

0.271***

0.277***

0.282***

0.285***

0.277***

0.268***

(0.103)

(0.100)

(0.103)

(0.104)

(0.0963)

(0.0964)

L4.gTFP

−0.142*

−0.143*

−0.154**

−0.165**

−0.170**

−0.168**

(0.0821)

(0.0807)

(0.0780)

(0.0807)

(0.0799)

(0.0819)

L5.gTFP

0.0788

0.0754

0.0744

0.0608

0.0586

0.0491

(0.0776)

(0.0768)

(0.0758)

(0.0753)

(0.0763)

(0.0759)

L6.gTFP

−0.0550

−0.0512

−0.0481

−0.0578

−0.0609

−0.0685

(0.0731)

(0.0737)

(0.0756)

(0.0783)

(0.0783)

(0.0777)

L7.gTFP

−0.0229

−0.0185

−0.0183

−0.0289

−0.0343

−0.0260

(0.0466)

(0.0473)

(0.0497)

(0.0513)

(0.0518)

(0.0532)

L8.gTFP

−0.0327

−0.0316

−0.0282

−0.0337

−0.0342

−0.0307

(0.0377)

(0.0373)

(0.0366)

(0.0388)

(0.0388)

(0.0379)

Oil rents of GDPNYGDPPET

0.0366

0.0314

−0.0415

−0.0519

−0.0552

0.00952

(0.0583)

(0.0579)

(0.0690)

(0.0718)

(0.0731)

(0.0556)

Political rights freedom house

 

−0.301

−0.490

−0.424

−0.315

−0.320

 

(0.494)

(0.495)

(0.503)

(0.495)

(0.490)

InteractionPR

  

8.34 × 10-12 **

7.63 × 10-12 **

7.09 × 10-12 *

7.41 × 10-12*

  

(0)

(0)

(0)

(0)

Time dummy

   

−0.197

−0.210

−0.199

   

(0.214)

(0.214)

(0.213)

Postsocialist dummy

    

−4.251

−4.071

    

(7.057)

(7.393)

OilSOC

     

−0.216

     

(0.236)

Constant

−0.238

1.057

1.921

4.713

5.794

5.561

(0.539)

(2.101)

(2.074)

(3.647)

(3.955)

(3.984)

Observations

215

212

208

208

208

208

No. of countries

74

73

72

72

72

72

No. of instruments

24

25

26

27

27

27

Arellano–Bond test

0.4703

0.3651

0.2942

0.3050

0.3074

0.3258

  1. Robust standard errors in parentheses
  2. ***p < 0.01, **p < 0.05, *p < 0.1

A.4: System-Dynamic Panel GMM, 2002–2006

Variable

(1)

(2)

(3)

(4)

(5)

(6)

gTFP

gTFP

gTFP

gTFP

gTFP

gTFP

L.gTFP

−0.517**

−0.933***

−0.932***

−0.932***

−1.044***

−1.059***

(0.204)

(0.184)

(0.185)

(0.185)

(0.268)

(0.240)

L2.gTFP

−0.325*

−0.851***

−0.840***

−0.840***

−1.009***

−1.021***

(0.179)

(0.226)

(0.236)

(0.236)

(0.341)

(0.325)

L3.gTFP

−0.132

−0.723***

−0.728***

−0.728***

−0.844***

−0.857***

(0.0887)

(0.218)

(0.217)

(0.217)

(0.266)

(0.267)

L4.gTFP

−0.0120

−0.169

−0.181

−0.181

−0.380*

−0.366*

(0.0894)

(0.212)

(0.217)

(0.217)

(0.216)

(0.194)

L5.gTFP

−0.147***

−0.190

−0.197

−0.197

−0.283

−0.268*

(0.0460)

(0.142)

(0.148)

(0.148)

(0.201)

(0.160)

L6.gTFP

−0.00860

−0.0121

−0.00976

−0.00976

−0.101

−0.108

(0.0864)

(0.159)

(0.156)

(0.156)

(0.100)

(0.0879)

L7.gTFP

−0.112

−0.282**

−0.279**

−0.279**

−0.288**

−0.293**

(0.0979)

(0.127)

(0.128)

(0.128)

(0.141)

(0.148)

L8.gTFP

0.160

0.0914

0.0894

0.0894

0.0394

0.0340

(0.102)

(0.120)

(0.118)

(0.118)

(0.1000)

(0.0961)

Oil rents of GDPNYGDPPET

0.250

0.339

0.421

0.421

0.417

0.500

(0.203)

(0.246)

(0.288)

(0.288)

(0.438)

(0.632)

Political rights freedom house

 

−2.210

−2.081

−2.081

0.843

0.747

 

(3.889)

(4.041)

(4.041)

(2.234)

(1.978)

Interaction oil rents and political rights

  

−0

−0

−0

−0

  

(0)

(0)

(0)

(0)

Time dummy

    

−0.863

−0.861

    

(0.539)

(0.544)

Postsocialist dummy

    

−47.74

−46.71

    

(71.03)

(71.80)

Oil × postsocialist dummy

     

−0.267

     

(0.853)

Constant

0.758

11.18

10.80

10.80

22.42

22.32

(2.196)

(17.88)

(18.31)

(18.31)

(26.93)

(27.30)

No. of instruments

72

72

49

50

51

52

Observations

386

307

303

303

303

303

No. of countries

79

78

77

77

77

77

Arellano–Bond test

0.2165

0.3078

0.3840

0.4428

0.6322

0.6647

  1. Robust standard errors in parentheses
  2. ***p < 0.01, **p < 0.05, *p < 0.1

A.5: System-Dynamic Panel GMM, 2007–2016

Variable

(1)

(2)

(3)

(4)

(5)

gTFP

gTFP

gTFP

gTFP

gTFP

L.gTFP

0.262***

0.277***

0.271***

0.273***

0.382***

(0.0671)

(0.0833)

(0.0854)

(0.0869)

(0.0865)

L2.gTFP

−0.00457

−0.00461

−0.0121

−0.0165

−0.0116

(0.0322)

(0.0382)

(0.0408)

(0.0426)

(0.0719)

L3.gTFP

−0.0764*

−0.0767

−0.0877

−0.0900

−0.0505

(0.0408)

(0.0592)

(0.0621)

(0.0633)

(0.0816)

L4.gTFP

0.00922

0.0248

0.0128

0.0130

−0.0147

(0.0373)

(0.0701)

(0.0730)

(0.0719)

(0.0766)

L5.gTFP

−0.0616

−0.0747

−0.0850

−0.0835

0.0205

(0.0583)

(0.0899)

(0.0959)

(0.0939)

(0.185)

L6.gTFP

−0.0266

−0.0282

−0.0409

−0.0394

−0.110*

(0.0281)

(0.0401)

(0.0447)

(0.0441)

(0.0656)

L7.gTFP

−0.00706

0.0100

−0.00514

−0.00347

0.0102

(0.0588)

(0.0641)

(0.0607)

(0.0614)

(0.145)

L8.gTFP

−0.0799

−0.0522

−0.0602

−0.0601

−0.0995

(0.0504)

(0.0580)

(0.0583)

(0.0596)

(0.0694)

Oil rents of GDPNYGDPPET

0.0577

0.100

0.237***

0.241***

0.160

(0.0738)

(0.0943)

(0.0904)

(0.0914)

(0.127)

Political rights freedom house

 

−0.432

0.0699

0.0190

−1.587

 

(0.495)

(0.492)

(0.483)

(1.042)

InteractionPR

  

−0***

−0***

−0

  

(0)

(0)

(0)

Postsocialist dummy

   

3.035

−4.339

   

(9.894)

(9.968)

SSA × postsocialist dummy

    

−0.0817

    

(0.257)

Constant

−0.309

1.054

−0.604

−1.204

7.397

(0.591)

(2.061)

(1.952)

(3.078)

(5.241)

No. of instruments

166

120

121

121

122

Observations

598

476

475

475

255

No. of Panel_ID

82

81

80

80

43

Arellano–Bond test

0.0061

0.1126

0.089

0.099

0.2006

  1. Robust standard errors in parentheses
  2. ***p < 0.01, **p < 0.05, *p < 0.1

A.6: List of 27 Oil-Exporting Countries

Algeria, Angola, Azerbaijan, Cameroon, Chad, Colombia, Democratic Republic of the Congo, Ecuador, Egypt, Equatorial Guinea, Gabon, Ghana, Indonesia, Iran, Iraq, Kazakhstan, Malaysia, Mexico, Nigeria, Pakistan, Russian Federation, Sudan, Thailand, Trinidad & Tobago, Turkmenistan, Ukraine, Venezuela.

A.7: List of Countries Used in the Estimations with gTFP as Dependent Variable

Albania, Algeria, Angola, Argentina, Armenia, Azerbaijan, Bahrain, Bangladesh, Barbados, Belarus, Bolivia, Brazil, Bulgaria, Burkina Faso, Cambodia, Cameroon, Chile, China, Colombia, Costa Rica, Côte d’Ivoire, Croatia, Dominican Republic, DRC, Ecuador, Egypt, Estonia, Ethiopia, Georgia, Ghana, Guatemala, India, Indonesia, Iran, Iraq, Jamaica, Jordan, Kazakhstan, Kenya, Kuwait, Kyrgyz Republic, Macedonia, Madagascar, Malawi, Malaysia, Mali, Mexico, Moldova, Morocco, Mozambique, Myanmar, Niger, Nigeria, Oman, Pakistan, Peru, Philippines, Poland, Qatar, Romania, Russian Federation, Saudi Arabia, Senegal, Serbia and Montenegro, South Africa, Sri Lanka, Sudan, Syria, Tajikistan, Tanzania, Thailand, Trinidad & Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Arab Emirates, Uruguay, Uzbekistan, Venezuela, Vietnam, Yemen, Zambia, Zimbabwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadik-Zada, E.R. Distributional Bargaining and the Speed of Structural Change in the Petroleum Exporting Labor Surplus Economies. Eur J Dev Res 32, 51–98 (2020). https://doi.org/10.1057/s41287-019-00221-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41287-019-00221-7

Keywords

JEL Classification