Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Superconductivity and magnetism on flux-grown single crystals of NiBi3

B. Silva, R. F. Luccas, N. M. Nemes, J. Hanko, M. R. Osorio, P. Kulkarni, F. Mompean, M. García-Hernández, M. A. Ramos, S. Vieira, and H. Suderow
Phys. Rev. B 88, 184508 – Published 13 November 2013

Abstract

We present resistivity, magnetization, and specific-heat measurements on flux-grown single crystals of NiBi3. We find typical behavior of a type-II superconductor, with, however, a sizable magnetic signal in the superconducting phase. There is a hysteretic magnetization characteristic of a ferromagnetic compound. By following the magnetization as a function of temperature, we find a drop at temperatures corresponding to the Curie temperature of ferromagnetic amorphous Ni. Thus, we assign the magnetism in NiBi3 crystals to amorphous Ni impurities.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 August 2013

DOI:https://doi.org/10.1103/PhysRevB.88.184508

©2013 American Physical Society

Authors & Affiliations

B. Silva1, R. F. Luccas1, N. M. Nemes2,3, J. Hanko1, M. R. Osorio1, P. Kulkarni1, F. Mompean4,5, M. García-Hernández4,5, M. A. Ramos1,5, S. Vieira1,5, and H. Suderow1,5,*

  • 1Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
  • 2Departamento de Fisica Aplicada III, GFMC, Universidad Complutense de Madrid, E-28040 Madrid, Spain
  • 3Unidad Asociada Laboratorio de heteroestructuras con aplicación en espintrónica, UCM, CSIC, E-28049 Madrid, Spain
  • 4Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
  • 5Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid, Spain

  • *Corresponding author: hermann.suderow@uam.es

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 88, Iss. 18 — 1 November 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×

Images

  • Figure 1
    Figure 1
    (a) NiBi3 needle of 1.2 mm length on a millimeter paper. The needle was separated mechanically from a bunch of NiBi3 needles joined together by Bi flux. (b) Scanning electron microscope (SEM) picture of one needle with a cross section of 0.1 mm × 0.1 mm. Some Bi flux bubbles can be identified.Reuse & Permissions
  • Figure 2
    Figure 2
    Powder diffraction pattern of NiBi3 recorded at room temperature using Cu Kα1 (λ=1.54051 Å) radiation. Red symbols are the experimental points, connected by a red line (guide to the eye). The black line is the pattern fitted by the Rietveld method. Fit residuals are given by the blue line. The two series (upper and lower) of vertical green strikes represent, respectively, the position in 2θ scale of the reflections from the NiBi3 (Pnma) and Bi (R-3m) phases. The arrow points at the most intense reflection from the Bi impurity.Reuse & Permissions
  • Figure 3
    Figure 3
    In the main figure, we show the temperature dependence of the resistivity between 300 and 3.5 K. In the lower right inset, we zoom into the superconducting transition at the critical temperature.Reuse & Permissions
  • Figure 4
    Figure 4
    Specific heat divided by temperature C/T as a function of temperature T for NiBi3 at zero magnetic field (red points) and at 5 T (blue points). Inset shows the jump at the superconducting transition as the zero field as the difference between 5- and 0-T specific heats (ΔC).Reuse & Permissions
  • Figure 5
    Figure 5
    Magnetization as a function of magnetic field at 1.8 K. The continuous line shows increasing field after ZFC. The dashed line shows decreasing field from 6 T. Arrows indicate the superconducting critical fields. Inset shows the full magnetization loop.Reuse & Permissions
  • Figure 6
    Figure 6
    Magnetization hysteresis loop at 10 K. The inset gives a zoom to highlight the behavior close to zero field. Note that the hysteresis is small, indicating soft ferromagnetism.Reuse & Permissions
  • Figure 7
    Figure 7
    Magnetization of NiBi3 at high temperatures, in an applied magnetic field of 1 mT. Note the transition at 525 K, close to the Curie temperature of amorphous Ni.Reuse & Permissions
×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×