Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Prolate-Spherical Shape Coexistence at N=28 in S44

C. Force, S. Grévy, L. Gaudefroy, O. Sorlin, L. Cáceres, F. Rotaru, J. Mrazek, N. L. Achouri, J. C. Angélique, F. Azaiez, B. Bastin, R. Borcea, A. Buta, J. M. Daugas, Z. Dlouhy, Zs. Dombrádi, F. De Oliveira, F. Negoita, Y. Penionzhkevich, M. G. Saint-Laurent, D. Sohler, M. Stanoiu, I. Stefan, C. Stodel, and F. Nowacki
Phys. Rev. Lett. 105, 102501 – Published 1 September 2010

Abstract

The structure of S44 has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 21+ and 01+ states, measured for the first time, lead to a reduced transition probability B(E2:21+02+)=8.4(26)e2fm4 and a monopole strength ρ2(E0:02+01+)=8.7(7)×103. Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.

  • Figure
  • Figure
  • Figure
  • Received 25 May 2010

DOI:https://doi.org/10.1103/PhysRevLett.105.102501

© 2010 The American Physical Society

Authors & Affiliations

C. Force1, S. Grévy1, L. Gaudefroy2, O. Sorlin1, L. Cáceres1, F. Rotaru3, J. Mrazek4, N. L. Achouri5, J. C. Angélique5, F. Azaiez6, B. Bastin5, R. Borcea3, A. Buta3, J. M. Daugas2, Z. Dlouhy4, Zs. Dombrádi7, F. De Oliveira1, F. Negoita3, Y. Penionzhkevich8, M. G. Saint-Laurent1, D. Sohler7, M. Stanoiu3, I. Stefan1, C. Stodel1, and F. Nowacki9

  • 1Grand Accélérateur National d’Ions Lours (GANIL), CEA/DSM-CNRS/IN2P3, Caen, France
  • 2CEA,DAM,DIF, F-91297 Arpajon, France
  • 3Institute of Atomic Physics, IFIN-HH, Bucharest-Magurele, P.O. Box MG6, Romania
  • 4Nuclear Physics Institute, AS CR, CZ-25068 Rez, Czech Republic
  • 5LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France
  • 6IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France
  • 7Institute of Nuclear Research, H-4001 Debrecen, Pf.51, Hungary
  • 8FLNR, JINR, 141980 Dubna, Moscow region, Russia
  • 9IPHC, CNRS/IN2P3 and Université de Strasbourg, F-67037 Stasbourg Cedex 2, France

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 105, Iss. 10 — 3 September 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×

Images

  • Figure 1
    Figure 1
    Electron energy spectrum obtained from the Si(Li) detectors. The peak at 1362.5(10) keV corresponds to the 02+01+ E0 transition. The low energy part is due to pair creation. Inset: Time distribution of the 1362.5 keV electron peak from which a half-life of 2.619(26)μsec is extracted.Reuse & Permissions
  • Figure 2
    Figure 2
    Part of the delayed gamma energy spectrum. Peaks from the β decay of K44 (1158 keV) and Co60 (1173 and 1332.5 keV) are identified, the latter overlapping with the 1329 keV 21+01+ transition of S44. The deconvolution of this doublet is shown in the inset.Reuse & Permissions
  • Figure 3
    Figure 3
    S44 level scheme calculated within the present SM approach (left) compared with available experimental data (right). E2 transition probabilities (in e2fm4) are reported on top of black arrows, and intrinsic quadrupole moments (in efm2) are shown in light gray on the right side of calculated levels. The ground state of the nucleus is head of a rotational band (β0.25) and coexists with the rather spherical low-lying 02+ isomer. Calculated values of the N=28 gap and correlation energies (in MeV) are given for even-even N=28 isotones.Reuse & Permissions
×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×