Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Single Equivalent Moving Dipole Model: An Efficient Approach for Localizing Sites of Origin of Ventricular Electrical Activation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We propose a new method for guiding catheter ablation procedures to abolish sites of origin of arrhythmias. This method models both cardiac electrical activity and current pulses delivered from the tip of the ablation catheter with a single equivalent moving dipole (SEMD). The SEMD parameters are obtained from analysis of body surface potentials. In this paper we examine the feasibility of this method by evaluating the performance of an inverse algorithm we developed to localize the SEMD from the surface potentials. In computer simulations realistic levels of measurement noise led to uncertainties in SEMD location ∼0.005 cm. Dipole orientation randomization contributed to increased uncertainty (0.04 cm) in SEMD location only when boundary effects were included. In ventricular pacing swine studies, we found that the SEMD model accurately accounted for electrocardiographic wave forms and that measurement noise led to an uncertainty of approximately 0.04 cm in the SEMD at 15 ms after the pacing spike. We have also found that the algorithm we developed to identify the SEMD parameters yielded positions for two spatially separated pacing sites that maintained their direction and were very close to their physical separation. These results suggest that the SEMD method may potentially be used to guide radio-frequency ablation procedures. © 2003 Biomedical Engineering Society.

PAC2003: 8719Nn, 8754Dt, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armoundas, A. A., A. B. Feldman, D. A. Sherman, and R. J. Cohen. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Med. Biol. Eng. Comput.39:562–570, 2001.

    Google Scholar 

  2. Arthur, R. M., and D. B. Geselowitz. Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. IEEE Trans. Biomed. Eng.17:141–154, 1970.

    Google Scholar 

  3. Arthur, R. M., D. B. Geselowitz, S. A. Briller, and R. F. Trost. Quadrupole components of the human surface electrocardiogram. Am. Heart J.83:663–677, 1972.

    Google Scholar 

  4. Bogun, F., M. Bahu, B. P. Knight, R. Weiss, W. Paladino, M. Harvey, R. Goyal, E. Daoud, K. C. Man, S. A. Strickberger, and F. Moraday. Comparison of effective and ineffective target sites that demonstrate concealed entrainment in patients with coronary artery disease undergoing radiofrequency ablation of ventricular tachycardia. Circulation95:183–190, 1997.

    Google Scholar 

  5. Brody, D. A., O. S. Warr 3rd, J. R. Wennemark, J. W. Cox, Jr., F. W. Keller, and F. H. Terry. Studies of the equivalent cardiac generator behavior of isolated turtle hearts. Circ. Res.29:512–524, 1971.

    Google Scholar 

  6. Cuffin, B. N., and D. B. Geselowitz. Studies of the electrocardiogram using realistic cardiac and torso models. IEEE Trans. Biomed. Eng.24:242–250, 1977.

    Google Scholar 

  7. de Guise, J., R. M. Gulrajani, P. Savard, R. Guardo, and F. A. Roberge. Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model. IEEE Trans. Biomed. Eng.32:126–135, 1985.

    Google Scholar 

  8. Einthoven, W.Die galvanometrische registerung des menschlichen elektrokardiogram: Zugleich eine beurtheilung der anwendung des capillar-elektrometers in der physiologie. Pflüg Arch. ges Physiol.99:472–480, 1903.

    Google Scholar 

  9. Gabor, D., and C. V. Nelson. Determination of the resultant dipole of the heart from measurements on the body surface. J. Appl. Phys.25:413–416, 1954.

    Google Scholar 

  10. Geselowitz, D. B.Multipole representation for an equivalent cardiac generator. Proc. IRE48:75–79, 1960.

    Google Scholar 

  11. Geselowitz, D. B.Two theorems concerning the quadrupole applicable to electrocardiography. IEEE Trans. Biomed. Eng.12:164–168, 1965.

    Google Scholar 

  12. Geselowitz, D. B., and H. Ishiwatari. A theoretic study of the effect of the intracavitary blood mass on the dipolarity of an equivalent heart generator. Vectorcardiography, edited by I. Hoffman. Amsterdam: North Holland, 1965, pp. 393–402.

    Google Scholar 

  13. Gornick, C. C., S. W. Adler, B. Pederson, J. Hauck, J. Budd, and J. Schweitzer. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation99:829–835, 1999.

    Google Scholar 

  14. Gulrajani, R. M.The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag.17:84–101, 1998.

    Google Scholar 

  15. Gulrajani, R. M., H. Pham-Huy, R. A. Nadeau, P. Savard, J. de Guise, R. E. Primeau, and F. A. Roberge. Application of the single moving dipole inverse solution to the study of the Wolff–Parkinson–White syndrome in man. J. Electrocardiol.17:271–287, 1984.

    Google Scholar 

  16. Helm, R. A., and T.-C. Chou. The use of a variability located dipole as an equivalent generator. Vectorcardiography, edited by I. Hoffman, R. I. Hamby, and E. Glassman. Amsterdam: North-Holland. 1971, p. 98.

    Google Scholar 

  17. Ideker, R. E., J. P. Bandura, J. W. Cox, Jr., F. W. Keller, D. M. Mirvis, and D. A. Brody. Path and significance of heart vector migration during QRS and ST-T complexes of ectopic beats in isolated perfused rabbit hearts. Circ. Res.41:558–564, 1977.

    Google Scholar 

  18. Ideker, R. E., J. P. Bandura, R. A. Larsen, J. W. Cox, Jr., F. W. Keller, and D. A. Brody. Localization of heart vectors produced by epicardial burns and ectopic stimuli. Circ. Res.36:105–112, 1975.

    Google Scholar 

  19. Langberg, J. J., M. Harvey, H. Calkins, R. el-Atassi, S. J. Kalbfleisch, and F. Morady. Titration of power output during radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing Clin. Electrophysiol.16:465–470, 1993.

    Google Scholar 

  20. Lee, M. A., F. Morady, A. Kadish, D. J. Schamp, M. C. Chin, M. M. Scheinman, J. C. Griffin, M. D. Lesh, D. Pederson, and J. Goldberger. Catheter modification of the atrioventricular junction with radiofrequency energy for control of atrioventricular nodal reentry tachycardia. Circulation83:827–835, 1991.

    Google Scholar 

  21. Lee, Y. Z., P. A. Belk, T. J. Mullen, S. Rivers, X. Zhang, A. A. Armoundas, M. Osaka, B. He, G. Aldea, and R. J. Cohen. Comparison of body surface potential and laplacian mapping with epicardial mapping for detection of cardiac ischemia in pigs. ANE3:244–251, 1998.

    Google Scholar 

  22. Mirvis, D. M., and M. A. Holbrook. Body surface distributions of repolarization potentials after acute myocardial infarction. III. Dipole ranging in normal subjects and in patients with acute myocardial infarction. J. Electrocardiol.14:387–398, 1981.

    Google Scholar 

  23. Morady, F., M. Harvey, S. J. Kalbfleisch, R. el-Atassi, H. Calkins, and J. J. Langberg. Radiofrequency catheter ablation of ventricular tachycardia in patients with coronary artery disease. Circulation87:363–372, 1993.

    Google Scholar 

  24. Nademanee, K., and E. M. Kosar. A nonfluoroscopic catheter-based mapping technique to ablate focal ventricular tachycardia. Pacing Clin. Electrophysiol.21:1442–1447, 1998.

    Google Scholar 

  25. Nelder, J. A., and R. Mead. A Simplex method for function minimization. Comput. J. (UK)7:308–313, 1965.

    Google Scholar 

  26. Oostendorp, T., and A. van Oosterom. Decoupling linear and non-linear parameters in bioelectric source estimation., 1993, pp. 803–804.

  27. Rudy, Y., and R. Plonsey. A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ. Res.46:283–291, 1980.

    Google Scholar 

  28. Salu, Y., C. Bischof, and N. Pandian. A noninvasive method for locating a cardiac dipole source in humans. J. Electrocardiol.15:249–258, 1982.

    Google Scholar 

  29. Savard, P., A. Ackaoui, R. M. Gulrajani, R. A. Nadeau, F. A. Roberge, R. Guardo, and B. Dube. Localization of cardiac ectopic activity in man by a single moving dipole. Comparison of different computation techniques. J. Electrocardiol.18:211–221, 1985.

    Google Scholar 

  30. Schilling, R. J., D. W. Davies, and N. S. Peters. Characteristics of sinus rhythm electrograms at sites of ablation of ventricular tachycardia relative to all other sites: A noncontact mapping study of the entire left ventricle. J. Cardiovasc. Electrophysiol.9:921–933, 1998.

    Google Scholar 

  31. SippensGroenewegen, A., H. Spekhorst, N. M. van Hemel, J. H. Kingma, R. N. Hauer, J. M. de Bakker, C. A. Grimbergen, M. J. Janse, and A. J. Dunning. Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12–lead electrocardiogram. Circulation88:2290–2306, 1993.

    Google Scholar 

  32. Smith, J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, and R. J. Cohen. Electrical alternans and cardiac electrical instability. Circulation77:110–121, 1988.

    Google Scholar 

  33. Spach, M. S., R. C. Barr, C. F. Lanning, and P. C. Tucek. Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation55:268–268, 1977.

    Google Scholar 

  34. Stevenson, W. G., E. Delacretaz, P. L. Friedman, and K. E. Ellison. Identification and ablation of macroreentrant ventricular tachycardia with the CARTO electroanatomical mapping system. Pacing Clin. Electrophysiol.21:1448–1456, 1998.

    Google Scholar 

  35. Stevenson, W. G., H. Khan, P. Sager, L. A. Saxon, H. R. Middlekauff, P. D. Natterson, and I. Wiener. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation88:1647–1670, 1993.

    Google Scholar 

  36. Stevenson, W. G., P. L. Friedman, and L. I. Ganz. Radiofrequency catheter ablation of ventricular tachycardia late after myocardial infarction. J. Cardiovasc. Electrophysiol.8:1309–1319, 1997.

    Google Scholar 

  37. Stevenson, W. G., P. T. Sager, P. D. Natterson, L. A. Saxon, H. R. Middlekauff, and I. Wiener. Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J. Am. Coll. Cardiol.26:481–488, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armoundas, A.A., Feldman, A.B., Mukkamala, R. et al. A Single Equivalent Moving Dipole Model: An Efficient Approach for Localizing Sites of Origin of Ventricular Electrical Activation. Annals of Biomedical Engineering 31, 564–576 (2003). https://doi.org/10.1114/1.1567281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1567281