Abstract
We propose a new method for guiding catheter ablation procedures to abolish sites of origin of arrhythmias. This method models both cardiac electrical activity and current pulses delivered from the tip of the ablation catheter with a single equivalent moving dipole (SEMD). The SEMD parameters are obtained from analysis of body surface potentials. In this paper we examine the feasibility of this method by evaluating the performance of an inverse algorithm we developed to localize the SEMD from the surface potentials. In computer simulations realistic levels of measurement noise led to uncertainties in SEMD location ∼0.005 cm. Dipole orientation randomization contributed to increased uncertainty (0.04 cm) in SEMD location only when boundary effects were included. In ventricular pacing swine studies, we found that the SEMD model accurately accounted for electrocardiographic wave forms and that measurement noise led to an uncertainty of approximately 0.04 cm in the SEMD at 15 ms after the pacing spike. We have also found that the algorithm we developed to identify the SEMD parameters yielded positions for two spatially separated pacing sites that maintained their direction and were very close to their physical separation. These results suggest that the SEMD method may potentially be used to guide radio-frequency ablation procedures. © 2003 Biomedical Engineering Society.
PAC2003: 8719Nn, 8754Dt, 8710+e
Similar content being viewed by others
References
Armoundas, A. A., A. B. Feldman, D. A. Sherman, and R. J. Cohen. Applicability of the single equivalent point dipole model to represent a spatially distributed bio-electrical source. Med. Biol. Eng. Comput.39:562–570, 2001.
Arthur, R. M., and D. B. Geselowitz. Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. IEEE Trans. Biomed. Eng.17:141–154, 1970.
Arthur, R. M., D. B. Geselowitz, S. A. Briller, and R. F. Trost. Quadrupole components of the human surface electrocardiogram. Am. Heart J.83:663–677, 1972.
Bogun, F., M. Bahu, B. P. Knight, R. Weiss, W. Paladino, M. Harvey, R. Goyal, E. Daoud, K. C. Man, S. A. Strickberger, and F. Moraday. Comparison of effective and ineffective target sites that demonstrate concealed entrainment in patients with coronary artery disease undergoing radiofrequency ablation of ventricular tachycardia. Circulation95:183–190, 1997.
Brody, D. A., O. S. Warr 3rd, J. R. Wennemark, J. W. Cox, Jr., F. W. Keller, and F. H. Terry. Studies of the equivalent cardiac generator behavior of isolated turtle hearts. Circ. Res.29:512–524, 1971.
Cuffin, B. N., and D. B. Geselowitz. Studies of the electrocardiogram using realistic cardiac and torso models. IEEE Trans. Biomed. Eng.24:242–250, 1977.
de Guise, J., R. M. Gulrajani, P. Savard, R. Guardo, and F. A. Roberge. Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model. IEEE Trans. Biomed. Eng.32:126–135, 1985.
Einthoven, W.Die galvanometrische registerung des menschlichen elektrokardiogram: Zugleich eine beurtheilung der anwendung des capillar-elektrometers in der physiologie. Pflüg Arch. ges Physiol.99:472–480, 1903.
Gabor, D., and C. V. Nelson. Determination of the resultant dipole of the heart from measurements on the body surface. J. Appl. Phys.25:413–416, 1954.
Geselowitz, D. B.Multipole representation for an equivalent cardiac generator. Proc. IRE48:75–79, 1960.
Geselowitz, D. B.Two theorems concerning the quadrupole applicable to electrocardiography. IEEE Trans. Biomed. Eng.12:164–168, 1965.
Geselowitz, D. B., and H. Ishiwatari. A theoretic study of the effect of the intracavitary blood mass on the dipolarity of an equivalent heart generator. Vectorcardiography, edited by I. Hoffman. Amsterdam: North Holland, 1965, pp. 393–402.
Gornick, C. C., S. W. Adler, B. Pederson, J. Hauck, J. Budd, and J. Schweitzer. Validation of a new noncontact catheter system for electroanatomic mapping of left ventricular endocardium. Circulation99:829–835, 1999.
Gulrajani, R. M.The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag.17:84–101, 1998.
Gulrajani, R. M., H. Pham-Huy, R. A. Nadeau, P. Savard, J. de Guise, R. E. Primeau, and F. A. Roberge. Application of the single moving dipole inverse solution to the study of the Wolff–Parkinson–White syndrome in man. J. Electrocardiol.17:271–287, 1984.
Helm, R. A., and T.-C. Chou. The use of a variability located dipole as an equivalent generator. Vectorcardiography, edited by I. Hoffman, R. I. Hamby, and E. Glassman. Amsterdam: North-Holland. 1971, p. 98.
Ideker, R. E., J. P. Bandura, J. W. Cox, Jr., F. W. Keller, D. M. Mirvis, and D. A. Brody. Path and significance of heart vector migration during QRS and ST-T complexes of ectopic beats in isolated perfused rabbit hearts. Circ. Res.41:558–564, 1977.
Ideker, R. E., J. P. Bandura, R. A. Larsen, J. W. Cox, Jr., F. W. Keller, and D. A. Brody. Localization of heart vectors produced by epicardial burns and ectopic stimuli. Circ. Res.36:105–112, 1975.
Langberg, J. J., M. Harvey, H. Calkins, R. el-Atassi, S. J. Kalbfleisch, and F. Morady. Titration of power output during radiofrequency catheter ablation of atrioventricular nodal reentrant tachycardia. Pacing Clin. Electrophysiol.16:465–470, 1993.
Lee, M. A., F. Morady, A. Kadish, D. J. Schamp, M. C. Chin, M. M. Scheinman, J. C. Griffin, M. D. Lesh, D. Pederson, and J. Goldberger. Catheter modification of the atrioventricular junction with radiofrequency energy for control of atrioventricular nodal reentry tachycardia. Circulation83:827–835, 1991.
Lee, Y. Z., P. A. Belk, T. J. Mullen, S. Rivers, X. Zhang, A. A. Armoundas, M. Osaka, B. He, G. Aldea, and R. J. Cohen. Comparison of body surface potential and laplacian mapping with epicardial mapping for detection of cardiac ischemia in pigs. ANE3:244–251, 1998.
Mirvis, D. M., and M. A. Holbrook. Body surface distributions of repolarization potentials after acute myocardial infarction. III. Dipole ranging in normal subjects and in patients with acute myocardial infarction. J. Electrocardiol.14:387–398, 1981.
Morady, F., M. Harvey, S. J. Kalbfleisch, R. el-Atassi, H. Calkins, and J. J. Langberg. Radiofrequency catheter ablation of ventricular tachycardia in patients with coronary artery disease. Circulation87:363–372, 1993.
Nademanee, K., and E. M. Kosar. A nonfluoroscopic catheter-based mapping technique to ablate focal ventricular tachycardia. Pacing Clin. Electrophysiol.21:1442–1447, 1998.
Nelder, J. A., and R. Mead. A Simplex method for function minimization. Comput. J. (UK)7:308–313, 1965.
Oostendorp, T., and A. van Oosterom. Decoupling linear and non-linear parameters in bioelectric source estimation., 1993, pp. 803–804.
Rudy, Y., and R. Plonsey. A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ. Res.46:283–291, 1980.
Salu, Y., C. Bischof, and N. Pandian. A noninvasive method for locating a cardiac dipole source in humans. J. Electrocardiol.15:249–258, 1982.
Savard, P., A. Ackaoui, R. M. Gulrajani, R. A. Nadeau, F. A. Roberge, R. Guardo, and B. Dube. Localization of cardiac ectopic activity in man by a single moving dipole. Comparison of different computation techniques. J. Electrocardiol.18:211–221, 1985.
Schilling, R. J., D. W. Davies, and N. S. Peters. Characteristics of sinus rhythm electrograms at sites of ablation of ventricular tachycardia relative to all other sites: A noncontact mapping study of the entire left ventricle. J. Cardiovasc. Electrophysiol.9:921–933, 1998.
SippensGroenewegen, A., H. Spekhorst, N. M. van Hemel, J. H. Kingma, R. N. Hauer, J. M. de Bakker, C. A. Grimbergen, M. J. Janse, and A. J. Dunning. Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12–lead electrocardiogram. Circulation88:2290–2306, 1993.
Smith, J. M., E. A. Clancy, C. R. Valeri, J. N. Ruskin, and R. J. Cohen. Electrical alternans and cardiac electrical instability. Circulation77:110–121, 1988.
Spach, M. S., R. C. Barr, C. F. Lanning, and P. C. Tucek. Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation55:268–268, 1977.
Stevenson, W. G., E. Delacretaz, P. L. Friedman, and K. E. Ellison. Identification and ablation of macroreentrant ventricular tachycardia with the CARTO electroanatomical mapping system. Pacing Clin. Electrophysiol.21:1448–1456, 1998.
Stevenson, W. G., H. Khan, P. Sager, L. A. Saxon, H. R. Middlekauff, P. D. Natterson, and I. Wiener. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation88:1647–1670, 1993.
Stevenson, W. G., P. L. Friedman, and L. I. Ganz. Radiofrequency catheter ablation of ventricular tachycardia late after myocardial infarction. J. Cardiovasc. Electrophysiol.8:1309–1319, 1997.
Stevenson, W. G., P. T. Sager, P. D. Natterson, L. A. Saxon, H. R. Middlekauff, and I. Wiener. Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J. Am. Coll. Cardiol.26:481–488, 1995.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Armoundas, A.A., Feldman, A.B., Mukkamala, R. et al. A Single Equivalent Moving Dipole Model: An Efficient Approach for Localizing Sites of Origin of Ventricular Electrical Activation. Annals of Biomedical Engineering 31, 564–576 (2003). https://doi.org/10.1114/1.1567281
Issue Date:
DOI: https://doi.org/10.1114/1.1567281