Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Possibility of generating high-energy photons by ultrarelativistic electrons in the field of a terawatt laser and in crystals

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It is found that the spectral characteristics of relativistic electrons moving in the field of a terawatt laser and through static transverse fields differ significantly. It is shown that, as applied to studying the nonlinear generation of higher harmonics and quantum recoil and spin effects upon hard photon emission, the Ba\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)er-Katkov method has advantages over other methods. Numerical data for the efficiency of hard photon generation in the field of terawatt lasers and in oriented crystals are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes under High Energy in Oriented Single Crystals (Nauka, Novosibirsk, 1989).

    Google Scholar 

  2. A. I. Akhiezer and N. F. Shul’ga, Electrodynamics of High Energies in Matter (Nauka, Moscow, 1993).

    Google Scholar 

  3. V. V. Beloshitsky and F. F. Komarov, Phys. Rep. 93(3), 117 (1982).

    Article  ADS  Google Scholar 

  4. A. H. Sorensen, Nucl. Instrum. Methods Phys. Res. B 119, 1 (1996).

    ADS  MathSciNet  Google Scholar 

  5. V. I. Ritus, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 5 (1979).

    MathSciNet  Google Scholar 

  6. R. N. Milburn, Phys. Rev. Lett. 10, 75 (1963).

    Article  ADS  Google Scholar 

  7. I. I. Goldman, Phys. Lett. 128, 664 (1962).

    Google Scholar 

  8. F. R. Arutyunian and V. A. Tumanian, Phys. Lett. 4, 176 (1963).

    ADS  Google Scholar 

  9. C. Bula, K. T. McDonald, E. J. Prebys, et al., Phys. Rev. Lett. 76, 3116 (1996).

    Article  ADS  Google Scholar 

  10. P. Eisenberger and S. Suckewer, Science 274, 201 (1996).

    Article  ADS  Google Scholar 

  11. R. W. Schoenlein, W. P. Leemans, A. H. Chin, et al., Science 274, 236 (1996).

    Article  ADS  Google Scholar 

  12. V. N. Baier and V. M. Katkov, Zh. Éksp. Teor. Fiz. 53, 1478 (1967) [Sov. Phys. JETP 26, 854 (1968)]; Zh. Éksp. Teor. Fiz. 55, 1542 (1968) [Sov. Phys. JETP 28, 807 (1969)].

    Google Scholar 

  13. Y. I. Salamin and F. H. M. Faisal, Phys. Rev. A 54, 4383 (1996).

    Article  ADS  Google Scholar 

  14. A. Kh. Khokonov, M. Kh. Khokonov, and R. M. Keshev, Pis’ma Zh. Tekh. Fiz. 24(20), 20 (1998) [Tech. Phys. Lett. 24, 797 (1998)].

    Google Scholar 

  15. I. I. Goldman, Zh. Éksp. Teor. Fiz. 46, 1412 (1964) [Sov. Phys. JETP 19, 954 (1964)].

    Google Scholar 

  16. A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 46, 776 (1964) [Sov. Phys. JETP 19, 529 (1964)]; Zh. Éksp. Teor. Fiz. 46, 1768 (1964) [Sov. Phys. JETP 19, 1191 (1964)]; Zh. Éksp. Teor. Fiz. 47, 1130 (1964) [Sov. Phys. JETP 20, 757 (1964)].

    MathSciNet  Google Scholar 

  17. T. J. Englert and E. A. Rinehart, Phys. Rev. A 28, 1539 (1983).

    Article  ADS  Google Scholar 

  18. M. Kh. Khokonov and R. A. Carrigan, Nucl. Instrum. Methods Phys. Res. B 145, 133 (1998).

    ADS  Google Scholar 

  19. J. C. Kimball and N. Cue, Phys. Rev. Lett. 52, 1747 (1984).

    Article  ADS  Google Scholar 

  20. J. Lindhard, Phys. Rev. A 43, 6032 (1991).

    Article  ADS  Google Scholar 

  21. A. Kh. Khokonov, M. Kh. Khokonov, and R. V. Keshev, Nucl. Instrum. Methods Phys. Res. B 145, 54 (1998).

    ADS  Google Scholar 

  22. A. D. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Tr. Fiz. Inst. Akad. Nauk SSSR 80, 100 (1975).

    Google Scholar 

  23. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, New York, 1982).

    Google Scholar 

  24. M. Kh. Khokonov, Pis’ma Zh. Éksp. Teor. Fiz. 56, 349 (1992) [JETP Lett. 56, 333 (1992)]; Zh. Éksp. Teor. Fiz. 103, 1723 (1993) [JETP 76, 849 (1993)].

    Google Scholar 

  25. A. Kh. Khokonov and M. Kh. Khokonov, Zh. Tekh. Fiz. 68(9), 37 (1998) [Tech. Phys. 43, 1043 (1998)].

    Google Scholar 

  26. K. Kirsebom, R. Medenwaldt, U. Mikkelsen, et al., Nucl. Instrum. Methods Phys. Res. B 119, 79 (1996).

    Article  ADS  Google Scholar 

  27. T. W. B. Kibble, Phys. Rev. Lett. 16, 1054 (1966); Phys. Rev. 150, 1060 (1966).

    ADS  Google Scholar 

  28. N. G. Klepikov, Zh. Éksp. Teor. Fiz. 26, 19 (1954).

    Google Scholar 

  29. K. Kirsebom, U. Mikkelsen, E. Uggerhoj, et al., Phys. Rev. Lett. 87, 054801 (2001).

    Google Scholar 

  30. X. Artru, V. N. Baier, T. V. Baier, et al., Nucl. Instrum. Methods Phys. Res. B 119, 246 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 72, No. 11, 2002, pp. 69–75.

Original Russian Text Copyright © 2002 by A. Khokonov, M. Khokonov, Kizdermishov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khokonov, A.K., Khokonov, M.K. & Kizdermishov, A.A. Possibility of generating high-energy photons by ultrarelativistic electrons in the field of a terawatt laser and in crystals. Tech. Phys. 47, 1413–1419 (2002). https://doi.org/10.1134/1.1522110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1522110

Keywords