Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Physical mechanisms of the therapeutic effect of ultrasound (a review)

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Therapeutic ultrasound is an emerging field with many medical applications. High intensity focused ultrasound (HIFU) provides the ability to localize the deposition of acoustic energy within the body, which can cause tissue necrosis and hemostasis. Similarly, shock waves from a lithotripter penetrate the body to comminute kidney stones, and transcutaneous ultrasound enhances the transport of chemotherapy agents. New medical applications have required advances in transducer design and advances in numerical and experimental studies of the interaction of sound with biological tissues and fluids. The primary physical mechanism in HIFU is the conversion of acoustic energy into heat, which is often enhanced by nonlinear acoustic propagation and nonlinear scattering from bubbles. Other mechanical effects from ultrasound appear to stimulate an immune response, and bubble dynamics play an important role in lithotripsy and ultrasound-enhanced drug delivery. A dramatic shift to understand and exploit these nonlinear and mechanical mechanisms has occurred over the last few years. Specific challenges remain, such as treatment protocol planning and real-time treatment monitoring. An improved understanding of the physical mechanisms is essential to meet these challenges and to further advance therapeutic ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Vaezy, M. Andrew, P. Kaczkowski, and L. Crum, Annu. Rev. Biomed. Eng. 3, 375 (2001).

    Article  Google Scholar 

  2. Echocardiography 18(4), 309 (2001).

  3. C. J. Diederich and K. Hynynen, Ultrasound Med. Biol. 25(6), 871 (1999).

    Article  Google Scholar 

  4. D. J. Coleman, F. L. Lizzi, R. H. Silverman, et al., Ultrasound Med. Biol. 12(8), 633 (1986).

    Article  Google Scholar 

  5. F. J. Fry, N. T. Sanghvi, R. S. Foster, et al., Ultrasound Med. Biol. 21(9), 1227 (1995).

    Article  Google Scholar 

  6. G. ter Haar, Ultrasound Med. Biol. 21(9), 1089 (1995).

    Google Scholar 

  7. K. R. Erikson, F. J. Fry, and J. P. Jones, IEEE Trans. Sonics Ultrason. 21(3), 144 (1974).

    Google Scholar 

  8. N. T. Sanghvi and R. H. Hawes, Exp. Invest. Endosc. 4(2), 383 (1994).

    Google Scholar 

  9. D. Cathignol, in Nonlinear Acoustics at the Beginning of the 21st Century: Proceedings of 16th ISNA, Moscow, 2002, Ed. by O. V. Rudenko and O. A. Sapozhnikov (2003), Vol. 1, pp. 371–378.

  10. A. K. Burov and G. D. Andreevskaya, Dokl. Akad. Nauk SSSR 106(3), 445 (1956).

    Google Scholar 

  11. V. A. Burov, N. P. Dmitrieva, and O. V. Rudenko, Dokl. Akad. Nauk 383(3), 101 (2002).

    Google Scholar 

  12. G. T. Clement and K. Hynynen, Phys. Med. Biol. 47(8), 1219 (2002).

    Article  Google Scholar 

  13. A. G. Visioli, I. H. Rivens, G. R. ter Haar, et al., Eur. J. Ultrasound 9(1), 11 (1999).

    Article  Google Scholar 

  14. K. Hynynen, O. Pomeroy, D. N. Smith, et al., Radiology 219(1), 176 (2001).

    Google Scholar 

  15. F. Wu, W.-Z. Chen, J. Bai, et al., Ultrasound Med. Biol. 27(8), 1099 (2001).

    Article  Google Scholar 

  16. N. T. Sanghvi, R. S. Foster, R. Bihrle, et al., Eur. J. Ultrasound 9(1), 19 (1999).

    Article  Google Scholar 

  17. A. Gelet, J. Y. Chapelon, R. Bouvier, et al., Eur. Urol. 40(2), 124 (2001).

    Article  Google Scholar 

  18. T. Uchida, N. T. Sanghvi, T. A. Gardner, et al., Urology 59(3), 394 (2002).

    Article  Google Scholar 

  19. P. J. Polack, T. Iwamoto, R. H. Silverman, et al., Invest. Ophthalmol. Visual Sci. 32(7), 2136 (1991).

    Google Scholar 

  20. F. L. Lizzi, C. X. Deng, P. Lee, et al., Eur. J. Ultrasound 9(1), 71 (1999).

    Article  Google Scholar 

  21. M. L. Denbow, I. H. Rivens, I. J. Rowland, et al., Am. J. Obstet. Gynecol. 182(2), 387 (2000).

    Google Scholar 

  22. C. Delon-Martin, C. Vogt, E. Chignier, et al., Ultrasound Med. Biol. 21(1), 113 (1995).

    Article  Google Scholar 

  23. S. Vaezy, R. Martin, G. Keilman, et al., J. Trauma 47(3), 521 (1999).

    Google Scholar 

  24. K. Hynynen, V. Colucci, A. Chung, and F. Jolesz, Ultrasound Med. Biol. 22, 1071 (1996).

    Google Scholar 

  25. Proceedings of 2nd International Symposium on Therapeutic Ultrasound, Seattle, 2002, Ed. by M. A. Andrew, L. A. Crum, and S. Vaezy (2003).

  26. A. J. Coleman and J. E. Saunders, Ultrasonics 31, 75 (1993).

    Article  Google Scholar 

  27. M. Delius, Eur. Surg. Res. 34(1–2), 30 (2002).

    Google Scholar 

  28. J. A. Moody, A. P. Evan, and J. E. Lingeman, in Comprehensive Urology, Ed. by R. M. Weiss, N. J. R. George, and P. H. O’Reilly (Mosby, New York, 2001), pp. 623–636.

    Google Scholar 

  29. B. Sturtevant, in Smith’s Textbook of Endourology, Ed. by A. D. Smith, G. H. Badlani, D. H. Bagley, R. V. Clayman, G. H. Jordan, L. R. Kavoussi, J. E. Lingeman, G. M. Preminger, and J. W. Segura (Quality Medical, St. Louis, MO, 1996), Chap. 39, pp. 529–552.

    Google Scholar 

  30. S. Zhu, F. H. Cocks, G. M. Preminger, and P. Zhong, Ultrasound Med. Biol. 28(5), 661 (2002).

    Article  Google Scholar 

  31. M. Delius, F. Ueberle, and S. Gambihler, Ultrasound Med. Biol. 20(3), 251 (1994).

    Google Scholar 

  32. M. Thiel, Clin. Orthop. Relat. Res. 387, 18 (2001).

    Google Scholar 

  33. M. Maier, T. Saisu, J. Beckmann, et al., Ultrasound Med. Biol. 27(5), 665 (2001).

    Article  Google Scholar 

  34. P. J. Fitzgerald, A. Takagi, M. P. Moore, et al., Circulation 103(14), 1828 (2001).

    Google Scholar 

  35. D. J. Coleman, F. L. Lizzi, J. Driller, et al., Ophthalmology 92, 347 (1985).

    Google Scholar 

  36. V. I. Filippenko and V. V. Tret’yak, Voen.-Med. Zh. 8, 30 (1989).

    Google Scholar 

  37. E. I. Sidorenko, V. V. Filatov, and Yu. M. Alimova, Vestn. Oftalmol. 115(2), 31 (1999).

    Google Scholar 

  38. A. L. Malcolm and G. R. ter Haar, Ultrasound Med. Biol. 22, 659 (1996).

    Article  Google Scholar 

  39. N. A. Watkin, G. R. ter Haar, and I. Rivens, Ultrasound Med. Biol. 22, 483 (1996).

    Article  Google Scholar 

  40. IEEE Guide for Medical Ultrasound Field Parameter Measurements (IEEE, New York, 1990), IEEE Std 790-1989.

  41. ANSI S1.24 TR-2002 American National Standard Technical Report—Bubble Detection and Cavitation Monitoring (2002).

  42. J. Ultrasound Med. 19, 68 (2000).

  43. R. L. Clarke and G. R. ter Haar, Ultrasound Med. Biol. 23(2), 299 (1997).

    Article  Google Scholar 

  44. C. R. Hill, Phys. Med. Biol. 15, 241 (1970).

    Article  Google Scholar 

  45. M. Brentnall, R. Martin, S. Vaezy, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1), 53 (2001).

    Article  Google Scholar 

  46. J. Y. Chapelon, D. Cathignol, C. Cain, et al., Ultrasound Med. Biol. 26(1), 153 (2000).

    Article  Google Scholar 

  47. S. Vaezy, R. Martin, P. Kaczkowski, et al., J. Vasc. Surg. 29(3), 533 (1999).

    Article  Google Scholar 

  48. S. Umemura, K. Sasaki, K. Kawabata, et al., in Proceedings of 1999 International IEEE Ultrasonics Symposium (IEEE, 1999), Vol. 2, No. 99CH37027, p. 1439.

    Google Scholar 

  49. C. A. Cain and S. Umemura, IEEE Trans. Microwave Theory Tech. 34(5), 542 (1986).

    Google Scholar 

  50. L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 125 (2000).

    Article  Google Scholar 

  51. J. P. Sferruzza, A. Birer, and D. Cathignol, Ultrasonics 38(10), 965 (2000).

    Article  Google Scholar 

  52. W. Eisenmenger, Ultrasound Med. Biol. 27, 683 (2001).

    Article  Google Scholar 

  53. O. V. Rudenko and O. A. Sapozhnikov, Moscow Univ. Phys. Bull. 46(1), 5 (1991).

    Google Scholar 

  54. P. Zhong and Y. Zhou, J. Acoust. Soc. Am. 110, 3283 (2001).

    Article  ADS  Google Scholar 

  55. D. L. Sokolov, M. R. Bailey, and L. A. Crum, J. Acoust. Soc. Am. 110, 1685 (2001).

    Article  ADS  Google Scholar 

  56. A. P. Evan, L. R. Willis, B. A. Connors, et al., J. Urol. 168(4), 1556 (2002).

    Google Scholar 

  57. D. Cathignol, J. Tavakkoli, A. Birer, and A. Arefiev, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(5), 788 (1998).

    Google Scholar 

  58. N. S. Bakhvalov, Ya. M. Zhileikin, and E. A. Zabolotskaya, Nonlinear Theory of Sound Beams (Nauka, Moscow, 1982; AIP, New York, 1987).

    Google Scholar 

  59. P. Meaney, M. D. Cahill, and G. R. ter Haar, Ultrasound Med. Biol. 26, 441 (2000).

    Article  Google Scholar 

  60. F. P. Curra, P. D. Mourad, V. A. Khokhlova, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1077 (2000).

    Article  Google Scholar 

  61. E. A. Filonenko and V. A. Khokhlova, Akust. Zh. 47, 541 (2001) [Acoust. Phys. 47, 468 (2001)].

    Google Scholar 

  62. M. A. Averkiou and R. O. Cleveland, J. Acoust. Soc. Am. 106, 102 (1999).

    Article  ADS  Google Scholar 

  63. T. Christopher, J. Comput. Acoust. 1, 371 (1993).

    Google Scholar 

  64. S. S. Kashcheeva, O. A. Sapozhnikov, V. A. Khokhlova, et al., Akust. Zh. 46, 211 (2000) [Acoust. Phys. 46, 170 (2000)].

    Google Scholar 

  65. J. Tavakkoli, D. Cathignol, R. Souchon, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 104, 2061 (1998).

    Article  ADS  Google Scholar 

  66. P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488 (1991).

    ADS  Google Scholar 

  67. S. Ginter, M. Liebler, E. Steiger, et al., J. Acoust. Soc. Am. 111, 2049 (2002).

    Article  ADS  Google Scholar 

  68. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  69. Nonlinear Acoustics, Ed. by M. F. Hamilton and D. T. Blackstock (Academic, San Diego, 1998), pp. 66–106.

    Google Scholar 

  70. J. Naze Tjotta, S. Tjotta, and E. H. Vefring, J. Acoust. Soc. Am. 89, 1017 (1991).

    ADS  Google Scholar 

  71. B. Ystad and J. Bernsten, Acta Acust. (China) 3, 323 (1995).

    Google Scholar 

  72. G. Wojcik, J. Mould, Jr., F. L. Lizzi, et al., in Proceedings of 1995 Ultrasonics Symposium (IEEE, 1995), p. 1617.

  73. T. Kamakura, T. Ishivata, and K. Matsuda, J. Acoust. Soc. Am. 107, 3035 (2000).

    Article  ADS  Google Scholar 

  74. A. C. Baker, A. M. Berg, A. Sahin, and J. Naze Tjotta, J. Acoust. Soc. Am. 97, 3510 (1995).

    Article  ADS  Google Scholar 

  75. T. Kamakura, M. Tani, Y. Kumamoto, and K. Ueda, J. Acoust. Soc. Am. 91, 3144 (1992).

    Article  ADS  Google Scholar 

  76. V. A. Khokhlova, R. Souchon, J. Tavakkoli, et al., J. Acoust. Soc. Am. 110, 95 (2001).

    Article  ADS  Google Scholar 

  77. H. H. Pennes, J. Appl. Physiol. 1, 93 (1948).

    Google Scholar 

  78. V. A. Khokhlova, N. Miller, R. Ollos, et al., in Proceedings of 17th International Congress on Acoustics (Rome, 2001), p. 186.

  79. S. Sapareto and W. Dewey, J. Radiat. Oncol. Biol. Phys. 10(6), 787 (1984).

    Google Scholar 

  80. V. A. Akulichev, in High-Intensity Ultrasonic Fields, Ed. by L. D. Rozenberg (Nauka, Moscow, 1968; Plenum, New York, 1971).

    Google Scholar 

  81. C. C. Church, J. Acoust. Soc. Am. 86, 215 (1989).

    Article  ADS  Google Scholar 

  82. O. A. Sapozhnikov, V. A. Khokhlova, M. R. Bailey, et al., J. Acoust. Soc. Am. 112, 1183 (2002).

    Article  Google Scholar 

  83. T. J. Matula, P. R. Hilmo, B. D. Storey, and A. J. Szeri, Phys. Fluids 14(3), 913 (2002).

    Article  ADS  Google Scholar 

  84. Z. Ding and S. M. Gracewski, J. Acoust. Soc. Am. 96(6), 3636 (1994).

    Article  ADS  Google Scholar 

  85. F. Chavrier, J. Y. Chapelon, A. Gelet, and D. Cathignol, J. Acoust. Soc. Am. 108, 432 (2000).

    Article  ADS  Google Scholar 

  86. R. G. Holt and R. A. Roy, Ultrasound Med. Biol. 27(10), 1399 (2001).

    Article  Google Scholar 

  87. J. E. Field, Phys. Med. Biol. 36, 1475 (1991).

    Article  Google Scholar 

  88. A. Philipp, M. Delius, C. Scheffczyk, et al., J. Acoust. Soc. Am. 93, 2496 (1993).

    Article  ADS  Google Scholar 

  89. J. C. Bamber and F. Dunn, in Encyclopedia of Acoustics, Ed. by M. J. Crocker (Wiley, New York, 1997), Vol. 3, pp. 1699–1726.

    Google Scholar 

  90. Y. Y. Botros, J. L. Volakis, P. VanBaren, and E. S. Ebbini, IEEE Trans. Biomed. Eng. 44(11), 1039 (1997).

    Article  Google Scholar 

  91. M. Lokhandwalla and B. Sturtevant, Phys. Med. Biol. 46(2), 413 (2001).

    Article  Google Scholar 

  92. P. P. Lele, in Ultrasound: Medical Applications, Biological Effects and Hazard Potential, Ed. by M. H. Repacholi, M. Grandolfo, and A. Rindi (Plenum, New York, 1986), pp. 275–306.

    Google Scholar 

  93. M. R. Bailey, L. N. Couret, O. A. Sapozhnikov, et al., Ultrasound Med. Biol. 27, 696 (2000).

    Google Scholar 

  94. O. A. Sapozhnikov, Akust. Zh. 37, 760 (1991) [Sov. Phys. Acoust. 37, 395 (1991)].

    Google Scholar 

  95. D. L. Sokolov, M. R. Bailey, L. A. Crum, et al., J. Endourol. 16(10), 709 (2002).

    Article  Google Scholar 

  96. P. Lele and A. Pierce, in Proceedings of Workshop on Interaction of Ultrasound and Biological Tissues, Seattle (DHEW, Washington, 1972), No. 73-8008, p. 121.

    Google Scholar 

  97. W. J. Fry, J. Acoust. Soc. Am. 22, 867 (1950).

    Google Scholar 

  98. H. T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949).

    Google Scholar 

  99. O. V. Rudenko, Moscow Univ. Phys. Bull., No. 6, 18 (1996).

  100. O. A. Sapozhnikov, T. V. Sinilo, and Yu. A. Pishchalnikov, in Nonlinear Acoustics at the Turn of the Millennium: Proceedings of 15th International Symposium on Nonlinear Acoustics, Goettingen, Germany, 1999, Ed. by W. Lauterborn and T. Kurz (Am. Inst. of Physics, 2000), pp. 483–486.

  101. F. O. Schmitt and B. Uhlemeyer, Proc. Soc. Exp. Biol. Med. 27, 626 (1930).

    Google Scholar 

  102. L. A. Crum and G. M. Hansen, Phys. Med. Biol. 27, 413 (1982).

    Article  Google Scholar 

  103. S. Vaezy, X. Shi, R. W. Martin, et al., Ultrasound Med. Biol. 27, 33 (2000).

    Google Scholar 

  104. E. L. Carstensen, D. S. Campbell, D. Hoffman, et al., Ultrasound Med. Biol. 16, 687 (1990).

    Google Scholar 

  105. P. Zhong, Y. Zhou, and S. Zhu, Ultrasound Med. Biol. 27, 119 (2001).

    Article  Google Scholar 

  106. A. Vogel and W. Lauterborn, J. Acoust. Soc. Am. 84, 719 (1988).

    Article  ADS  Google Scholar 

  107. L. A. Crum, in Proceedings of Ultrasonics Symposium (1982), Vol. 1, p. 1.

    Google Scholar 

  108. T. R. Morgan, V. P. Laudone, W. D. Heston, et al., J. Urol. 139, 186 (1988).

    Google Scholar 

  109. S. L. Poliachik, W. L. Chandler, P. D. Mourad, et al., Ultrasound Med. Biol. 27(11), 1567 (2001).

    Article  Google Scholar 

  110. J. Tavakkoli, A. Birer, A. Arefiev, et al., Ultrasound Med. Biol. 23(1), 107 (1997).

    Article  Google Scholar 

  111. J.-Y. Chapelon, J. Margonari, F. Vernier, et al., Cancer Res. 52, 6353 (1992).

    Google Scholar 

  112. F. J. Fry and L. K. Johnson, Ultrasound Med. Biol. 4, 337 (1978).

    Article  Google Scholar 

  113. R. O. Cleveland, D. A. Lifshitz, B. A. Connors, et al., Ultrasound Med. Biol. 24, 293 (1998).

    Article  Google Scholar 

  114. M. Lokhandwalla, J. A. McAteer, J. C. Williams, Jr., and B. Sturtevant, Phys. Med. Biol. 46(4), 1245 (2001).

    Article  Google Scholar 

  115. K. Hynynen, Ultrasound Med. Biol. 17(2), 157 (1991).

    Article  Google Scholar 

  116. A. J. Coleman, J. E. Saunders, L. A. Crum, and M. Dyson, Ultrasound Med. Biol. 13, 69 (1987).

    Google Scholar 

  117. C. Chaussy, W. Brendel, and E. Schmiedt, Lancet 2(8207), 1265 (1980).

    Google Scholar 

  118. R. E. Apfel and C. K. Holland, Ultrasound Med. Biol. 17(2), 179 (1991).

    Article  Google Scholar 

  119. C. X. Deng, Q. Xu, R. E. Apfel, and C. K. Holland, Ultrasound Med. Biol. 22(7), 939 (1996).

    Article  Google Scholar 

  120. R. Seip and E. S. Ebbini, IEEE Trans. Biomed. Eng. 42(8), 828 (1995).

    Article  Google Scholar 

  121. R. Maass-Moreno, C. A. Damianou, and N. T. Sanghvi, J. Acoust. Soc. Am. 100, 2522 (1996).

    ADS  Google Scholar 

  122. M. Ribault, J.-Y. Chapelon, D. Cathignol, and A. Gelet, Ultrason. Imaging 20(3), 160 (1998).

    Google Scholar 

  123. R. Souchon, L. Soualmi, M. Bertrand, et al., Ultrasonics 40, 867 (2001).

    Google Scholar 

  124. X. Shi, R. W. Martin, D. Rouseff, et al., Ultrason. Imaging 21(2), 107 (1999).

    Google Scholar 

  125. M. Fatemi and J. F. Greenleaf, Proc. Natl. Acad. Sci. USA 96(12), 6603 (1999).

    Article  ADS  Google Scholar 

  126. E. E. Konofagou, J. Thierman, T. Karjalainen, and K. Hynynen, Ultrasound Med. Biol. 28(3), 331 (2002).

    Article  Google Scholar 

  127. O. V. Rudenko and A. P. Sarvazyan, Crit. Rev. Biomed. Eng., No. 3, 6 (2000).

  128. J. E. Lingeman, Urol. Clin. North Am. 24, 185 (1997).

    Article  Google Scholar 

  129. J. J. Rassweiler, C. Renner, C. Chaussy, and S. Thuroff, Eur. Urol. 39(2), 187 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Akusticheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 49, No. 4, 2003, pp. 437–464.

Original English Text Copyright © 2003 by Bailey, Khokhlova, Sapozhnikov, Kargl, Crum.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, M.R., Khokhlova, V.A., Sapozhnikov, O.A. et al. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust. Phys. 49, 369–388 (2003). https://doi.org/10.1134/1.1591291

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1591291

Keywords