Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Graviton mass, quintessence, and oscillatory character of Universe evolution

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

On the basis of the field relativistic theory of gravity, an upper limit on the graviton mass, m g≤1.6×10−66 g, is obtained at a 95% C.L. by using data on the density parameter Ωtot. Within one standard deviation, the probable value of the graviton mass is m g=1.3×10−66 g. It is indicated that, according to the relativistic theory of gravity, the existence of quintessence is needed for explaining the accelerated expansion of the Universe. Experimental data on the age of the Universe and on the density of cold matter make it possible to determine the allowed interval of the parameter ν that enters into the equation of state for the quintessence and to indicate the instants of time that correspond to the beginning and cessation of the era of accelerated expansion, as well as the maximum-expansion time, which corresponds to the half-period of the oscillatory evolution of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  3. P. M. Garnvich et al., Astrophys. J. 509, 74 (1998).

    ADS  Google Scholar 

  4. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    ADS  Google Scholar 

  5. S. Kato, Mon. Not. R. Astron. Soc. 195, 467 (1981).

    ADS  Google Scholar 

  6. A. D. Linde, Phys. Lett. B 108B, 389 (1982).

    ADS  MathSciNet  Google Scholar 

  7. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).

    ADS  Google Scholar 

  8. A. A. Starobinskii, Phys. Lett. B 117B, 175 (1982).

    ADS  Google Scholar 

  9. R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  10. R. R. Caldwell and P. J. Steinhardt, Phys. Rev. D 57, 6057 (1998).

    Article  ADS  Google Scholar 

  11. J. P. Ostriker and P. J. Steinhardt, Sci. Am. 284, 46 (2001).

    Google Scholar 

  12. A. A. Logunov and M. A. Mestvirishvili, Relativistic Theory of Gravitation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  13. A. A. Logunov, Theory of Gravitation (Nauka, Moscow, 2001) [in Russian].

  14. V. L. Kalashnikov, gr-qc/0109060; gr-qc/0202084.

  15. V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys. (N.Y.) 35, 167 (1965), and references therein.

    Article  Google Scholar 

  16. R. P. Feynman et al., Feynman Lectures on Gravitation (Addison-Wesley, Reading, 1995).

    Google Scholar 

  17. A. A. Logunov and M. A. Mestvirishvili, Teor. Mat. Fiz. 61, 327 (1984).

    MathSciNet  Google Scholar 

  18. R. A. Sunyaev and Ya. B. Zeldovitch, Astrophys. Space Sci. 7, 1 (1970).

    ADS  Google Scholar 

  19. J. Silk, Nature 215, 1155 (1967); 218, 453 (1968); Astrophys. J. 151, 459 (1968).

    ADS  Google Scholar 

  20. P. J. Peebls and J. T. Yu, Astrophys. J. 162, 815 (1970).

    ADS  Google Scholar 

  21. M. L. Wilson and J. Silk, Astrophys. J. 243, 14 (1981).

    Article  ADS  Google Scholar 

  22. J. R. Bond and G. Efstathiou, Astrophys. J. 285, 45 (1984); Mon. Not. R. Astron. Soc. 226, L655 (1987).

    Article  ADS  Google Scholar 

  23. G. Jungman et al., Phys. Rev. Lett. 76, 1007 (1996); Phys. Rev. D 54, 1332 (1996).

    Article  ADS  Google Scholar 

  24. J. R. Bond, G. E. Efstathiou, and M. Tegmark, Mon. Not. R. Astron. Soc. 291, L33 (1997).

    ADS  Google Scholar 

  25. Particle Data Group, Phys. Rev. D 66, 1 (2002).

    Google Scholar 

  26. A. H. Jaffe, P. A. R. Ade, A. Babbi, et al., Phys. Rev. Lett. 86, 3475 (2001).

    ADS  Google Scholar 

  27. P. de Bernardis et al., Nature (London) 404, 995 (2002).

    Google Scholar 

  28. S. Hanany, P. Ade, A. Babbi, et al., Astrophys. J. 545, L5 (2000).

    Article  ADS  Google Scholar 

  29. C. Bennett, A. Banday, K. M. Gorski, et al., Astrophys. J. 464, L1 (1996).

    Article  ADS  Google Scholar 

  30. A. E. Lange et al., Phys. Rev. D 63, 042001 (2001); J. R. Bond and A. H. Jaffe, Philos. Trans. R. Soc. London, Ser. A 357, 57 (1999).

    Google Scholar 

  31. C. Bennet et al., astro-ph/0302207 v.2.

  32. A. D. Chernin, Usp. Fiz. Nauk 171, 1153 (2001).

    Google Scholar 

  33. A. D. Sakharov, Scientific Papers (Tsentrkom., Moscow, 1985), p. 269; Zh. Éksp. Teor. Fiz. 83, 1233 (1982) [Sov. Phys. JETP 56, 705 (1982)].

    Google Scholar 

  34. É. G. Aman and M. A. Markov, Teor. Mat. Fiz. 58, 163 (1984); M. A. Markov, Ann. Phys. (N.Y.) 155, 333 (1984).

    Google Scholar 

  35. R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Clarendon, Oxford, 1934).

    Google Scholar 

  36. P. J. Steinhardt and N. Turok, hep-th/0111030, Vol. 2

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 67, No. 8, 2004, pp. 1618–1626.

Original Russian Text Copyright © 2004 by Gershtein, Logunov, Mestvirishvili, Tkachenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershtein, S.S., Logunov, A.A., Mestvirishvili, M.A. et al. Graviton mass, quintessence, and oscillatory character of Universe evolution. Phys. Atom. Nuclei 67, 1596–1604 (2004). https://doi.org/10.1134/1.1788049

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1788049

Keywords