Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The minimum stellar mass in early galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The conditions for the fragmentation of the baryonic component during mergers of dark matter halos in the early Universe are studied. We assume that the baryonic component undergoes a shock compression. The characteristic masses of protostellar molecular clouds and the minimum masses of protostars originating in these clouds decrease with increasing halo mass. This may indicate that the initial stellar mass function in more massive galaxies was shifted towards lower masses during the initial stages of their formation. This would result in an increase in the number of stars per unit mass of the halo, i.e., in an increase in the efficiency of star formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abel, P. Anninos, Y. Zhang, and M. L. Norman, New Astron. 2, 181 (1997).

    ADS  Google Scholar 

  2. V. Bromm, P. Coppi, and R. Larson, Astrophys. J. 564, 23 (2002).

    Article  ADS  Google Scholar 

  3. M. Tegmark, J. Silk, M. J. Rees, et al., Astrophys. J. 474, 1 (1997).

    Article  ADS  Google Scholar 

  4. L. P. Grishchuk and Ya. B. Zel’dovich, Astron. Zh. 58, 472 (1981) [Sov. Astron. 25, 267 (1981)].

    ADS  MathSciNet  Google Scholar 

  5. P. J. E. Peebles, Astrophys. J. 263, L1 (1982).

    Article  ADS  Google Scholar 

  6. E. Kolb and M. Turner, The Early Universe (Addison-Wesley, Readwood City, 1990).

    Google Scholar 

  7. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Univ. Press, Princeton, 1993).

    Google Scholar 

  8. C. Lin, L. Mestel, and F. Shu, Astrophys. J. 142, 1431 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. Ya. B. Zel’dovich, Astrofiz. 6, 119 (1970).

    Google Scholar 

  10. J. Smith, Astrophys. J. 238, 842 (1980).

    ADS  Google Scholar 

  11. A. A. Suchkov, Yu. A. Shchekinov, and M. A. Édel’man, Astrofiz. 18, 629 (1982) [Astrophys. 18, 360 (1982)].

    ADS  Google Scholar 

  12. C. Struck-Marcell, Astrophys. J. 259, 116 (1982).

    ADS  Google Scholar 

  13. C. Struck-Marcell, Astrophys. J. 259, 127 (1982).

    ADS  Google Scholar 

  14. P. R. Shapiro and H. Kang, Astrophys. J. 318, 32 (1987).

    ADS  Google Scholar 

  15. Yu. A. Shchekinov, Astrophys. Space Sci. 175, 57 (1991).

    Article  ADS  Google Scholar 

  16. M. Yamada and R. Nishi, Astrophys. J. 505, 148 (1998).

    Article  ADS  Google Scholar 

  17. R. Cen, Astrophys. J. (2005) (in press); astro-ph/0311329 (2003).

  18. D. N. Spergel, L. Verde, H. V. Peiris, et al., Astrophys. J., Suppl. Ser. 148, 175 (2003).

    Article  ADS  Google Scholar 

  19. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).

    ADS  Google Scholar 

  20. F. Miniati, T. W. Jones, A. Ferrara, and D. Ryu, Astrophys. J. 491, 216 (1997).

    Article  ADS  Google Scholar 

  21. D. Galli and F. Palla, Astron. Astrophys. 335, 403 (1998).

    ADS  Google Scholar 

  22. D. Hollenbach and C. F. McKee, Astrophys. J., Suppl. Ser. 41, 555 (1979).

    Article  ADS  Google Scholar 

  23. D. Flower, Mon. Not. R. Astron. Soc. 318, 875 (2000).

    Article  ADS  Google Scholar 

  24. D. Puy and M. Signore, New Astron. 3, 247 (1998).

    ADS  Google Scholar 

  25. R. Barkana and A. Loeb, Phys. Rep. 349, 125 (2001).

    Article  ADS  Google Scholar 

  26. D. A. Varshalovich and V. K. Khersonskii, Pis’ma Astron. Zh. 2, 574 (1976) [Sov. Astron. Lett. 2, 227 (1976)].

    ADS  Google Scholar 

  27. D. Galli and F. Palla, Planet. Space Sci. 12–13, 1197 (2002).

    Google Scholar 

  28. M. Stone, Astrophys. J. 159, 277 (1970).

    ADS  Google Scholar 

  29. D. Gilden, Astrophys. J. 279, 335 (1984).

    Article  ADS  Google Scholar 

  30. K. Omukai and R. Nishi, Astrophys. J. 508, 141 (1998).

    Article  ADS  Google Scholar 

  31. E. Ripamonti, F. Haardt, A. Ferrara, et al., Mon. Not. R. Astron. Soc. 334, 401 (2002).

    Article  ADS  Google Scholar 

  32. G. B. Field, Astrophys. J. 142, 531 (1965).

    ADS  Google Scholar 

  33. Yu. A. Shchekinov, Astron. Zh. 55, 311 (1978) [Sov. Astron. 22, 182 (1978)].

    ADS  Google Scholar 

  34. K. Omukai and F. Palla, Astrophys. J. 589, 677 (2003).

    Article  ADS  Google Scholar 

  35. H. Kamaya and J. Silk, Mon. Not. R. Astron. Soc. 332, 251 (2002).

    Article  ADS  Google Scholar 

  36. H. Kamaya and J. Silk, Mon. Not. R. Astron. Soc. 339, 1256 (2003).

    Article  ADS  Google Scholar 

  37. K. Omukai and T. Kitayama, Astrophys. J. 599, 738 (2003).

    ADS  Google Scholar 

  38. H. Mizusawa, R. Nishi, and K. Omukai, Publ. Astron. Soc. Jpn. (2005) (in press); astro-ph/0404333 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 82, No. 8, 2005, pp. 659–667.

Original Russian Text Copyright © 2005 by Vasil’ev, Shchekinov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, E.O., Shchekinov, Y.A. The minimum stellar mass in early galaxies. Astron. Rep. 49, 587–594 (2005). https://doi.org/10.1134/1.2010647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2010647

Keywords