Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A high-order nonlinear envelope equation for gravity waves in finite-depth water

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A third-order nonlinear envelope equation is derived for surface waves in finite-depth water by assuming small wave steepness, narrow-band spectrum, and small depth as compared to the modulation length. A generalized Dysthe equation is derived for waves in relatively deep water. In the shallow-water limit, one of the nonlinear dispersive terms vanishes. This limit case is compared with the envelope equation for waves described by the Korteweg-de Vries equation. The critical regime of vanishing nonlinearity in the classical nonlinear Schrödinger equation for water waves (when kh ≈ 1.363) is analyzed. It is shown that the modulational instability threshold shifts toward the shallow-water (long-wavelength) limit with increasing wave intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Talanov, Pis’ma Zh. Éksp. Teor. Fiz. 2, 218 (1965) [JETP Lett. 2, 138 (1965)].

    Google Scholar 

  2. P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).

    Article  ADS  Google Scholar 

  3. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Oscillation and Wave Theory (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  4. V. E. Zakharov, Prikl. Mekh. Tekh. Fiz. 2, 86 (1968).

    Google Scholar 

  5. H. Hashimoto and J. Ono, J. Phys. Soc. Jpn. 33, 805 (1972).

    Google Scholar 

  6. A. Davey, J. Fluid Mech. 53, 769 (1972).

    ADS  MATH  Google Scholar 

  7. T. B. Benjamin and J. E. Feir, J. Fluid Mech. 27, 417 (1967).

    ADS  Google Scholar 

  8. D. J. Benney and G. J. Roskes, Stud. Appl. Math. 48, 377 (1969).

    Google Scholar 

  9. A. Davey and K. Stewartson, Proc. R. Soc. London, Ser. A 338, 101 (1974).

    ADS  MathSciNet  Google Scholar 

  10. E. M. Gromov and V. I. Talanov, Zh. Éksp. Teor. Fiz. 110, 137 (1996) [JETP 83, 73 (1996)].

    Google Scholar 

  11. K. B. Dysthe, Proc. R. Soc. London, Ser. A 369, 105 (1979).

    ADS  MATH  Google Scholar 

  12. Yu. V. Sedletskii, Zh. Éksp. Teor. Fiz. 124, 200 (2003) [JETP 97, 180 (2003)].

    Google Scholar 

  13. K. Trulsen, I. Kliakhandler, K. B. Dysthe, et al., Phys. Fluids 12, 2432 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. S. Johnson, Proc. R. Soc. London, Ser. A 357, 131 (1977).

    ADS  MATH  Google Scholar 

  15. T. Kakutani and K. Michihiro, J. Phys. Soc. Jpn. 52, 4129 (1983).

    Article  Google Scholar 

  16. E. J. Parkes, J. Phys. A: Math. Gen. 20, 2025 (1987).

    ADS  Google Scholar 

  17. A. V. Slyunyaev and E. N. Pelinovskii, Zh. Éksp. Teor. Fiz. 116, 318 (1999) [JETP 89, 173 (1999)].

    Google Scholar 

  18. A. V. Slyunyaev, Zh. Éksp. Teor. Fiz. 119, 606 (2001) [JETP 92, 529 (2001)].

    Google Scholar 

  19. R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  20. R. Grimshaw, D. Pelinovsky, E. Pelinovsky, et al., Physica D (Amsterdam) 159, 35 (2001).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 128, No. 5, 2005, pp. 1061–1077.

Original Russian Text Copyright © 2005 by Slunyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slunyaev, A.V. A high-order nonlinear envelope equation for gravity waves in finite-depth water. J. Exp. Theor. Phys. 101, 926–941 (2005). https://doi.org/10.1134/1.2149072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2149072

Keywords