Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some Aspects of Identification of Dynamic Objects under Incorrect Observation Conditions

  • Intellectual Control Systems, Data Analysis
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We solve the problems of numerical-analytical representation of the solution of an equation describing the dynamic object and its measurable output, as well as optimal computation of the values of continuous linear functionals (numerical characteristics) of measurable functions based on incorrect data containing not only fluctuation error but also singular interference. The method provides the maximum possible decomposition of computational procedures, does not require to carry out traditional linearization operations and the choice of initial approximations, and also is not related to the computation of spectral coefficients in finite linear combinations (with given basic functions) that describe integral curves, measurable functions, and singular interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleksandrov, A.G., Optimal’nye i adaptivnye sistemy (Optimal and Adaptive Systems), Moscow: Vysshaya Shkola, 1989.

    Google Scholar 

  2. Panteleev, A.V. and Bortakovskii, A.S., Teoriya upravleniya v primerakh i zadachakh (Control Theory in Examples and Problems), Moscow: Vysshaya Shkola, 2003.

    Google Scholar 

  3. Krasovskii, A.A., Theory of Science and Status of the Control Theory, Autom. Remote Control, 2000, vol. 61. no. 4, part 1, pp. 537–553.

    MathSciNet  Google Scholar 

  4. Zhdanyuk, B.F., Osnovy statisticheskoi obrabotki traektornykh izmerenii (Fundamentals of Statistical Processing for Trajectory Readings), Moscow: Sovetskoe Radio, 1978.

    Google Scholar 

  5. Bulychev, Yu.G. and Manin, A.P., Matematicheskie aspekty opredeleniya dvizheniya letatel’nykh apparatov (Mathematical Aspects of Motion Identification for Flying Vehicles), Moscow: Mashinostroenie, 2000.

    MATH  Google Scholar 

  6. Bulychev, Yu.G., Vasil’ev, V.V., Dzhugan, R.V., et al., Informatsionno-izmeritel’noe obespechenie naturnykh ispytanii slozhnykh tekhnicheskikh kompleksov (Information and Measurement for Live Testing of Complex Technical Systems), Manin, A.P. and Vasil’ev, V.V., Eds., Moscow: Mashinostroenie-Polet, 2016.

  7. Bulychev, Yu.G., Burlai, I.V., and Manin, A.A., Analytic Construction of Control Systems by the Method of Supporting Integral, Autom. Remote Control, 1994, vol. 55, no. 7, part 1, pp. 954–963.

    MATH  Google Scholar 

  8. Bulychev, Yu.G. and Manin, A.A., Synthesis of Adaptive Optimal Control Systems for Stochastic Objects from a Forecast Model, Autom. Remote Control, 1995, vol. 56, no. 9, part 2, pp. 1268–1277.

    MATH  Google Scholar 

  9. Brandin, V.N., Vasil’ev, A.A., and Khudyakov, S.T., Osnovy eksperimental’noi kosmicheskoi ballistiki (Fundamentals of Experimental Space Ballistics), Moscow: Mashinostroenie, 1974.

    Google Scholar 

  10. Brandin, V.N. and Razorenov, G.N., Opredelenie traektorii kosmicheskikh apparatov (Trajectory Identification for Spacecraft), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  11. Ljung, L., On Model Accuracy in System Identification, Izv. Akad. Nauk, Tekh. Kibern., 1992, no. 6, pp. 55–64.

  12. Vorob’ev, L.M., K teorii poleta raket (On the Theory of Rocket Flight), Moscow: Mashinostroenie, 1970.

    Google Scholar 

  13. Bulychev, Yu.G. and Mel’nikov, A.V., A Numerical-Analytic Method of Studying the Behavior of a Dynamical System Based on Incorrect Observations without Extending the State Space, Zh. Vych. Mat. Mat. Fiz., 2019, vol. 59, no. 6, pp. 937–950.

    Google Scholar 

  14. Leonov, V.A. and Poplavskii, B.K., Filtering of Measurement Errors in the Estimation of Linear Transformations of the Useful Signal, Izv. Akad. Nauk, Tekh. Kibern., 1992, no. 1, pp. 163–170.

  15. Bulychev, Yu.G. and Eliseev, A.V., A Computational Scheme for Invariant-Unbiased Estimation of the Values of Linear Operators from a Given Class, Zh. Vych. Mat. Mat. Fiz., 2008, vol. 48, no. 4, pp. 580–592.

    MATH  Google Scholar 

  16. Bulychev, Yu.G., Eliseev, A.V., Borodin, L.I., et al., Generalized Invariant-Unbiased Masking and Estimation of Informational Processes with Multistructural Noise, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 672–680.

    Article  MathSciNet  Google Scholar 

  17. Bulychev, Yu.G., Method of Support Integral Curves for solving the Cauchy Problem for Ordinary Differential Equations, Zh. Vych. Mat. Mat. Fiz., 1988, vol. 28, no. 10, pp. 1482–1490.

    MathSciNet  MATH  Google Scholar 

  18. Bulychev, Yu.G., Methods of Numerical-Analytic Integration of Differential Equations, Zh. Vych. Mat. Mat. Fiz., 1991, vol. 31, no. 9, pp. 1305–1319.

    MathSciNet  MATH  Google Scholar 

  19. Bibikov, Yu.N., Obshchii kurs obyknovennykh differentsial’nykh uravnenii (A General Course of Ordinary Differential Equations), Leningrad: Leningr. Univ., 1981.

    Google Scholar 

  20. Trenogin, V.A., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1980.

    Google Scholar 

  21. Tikhonov, A.N., Vasil’eva, A.B., and Sveshnikov, A.G., Differentsial’nye uravneniya (Differential Equations), Moscow: Nauka, 1985.

    MATH  Google Scholar 

  22. Kantorovich, L.V. and Akilov, G.P., Funktsional’nyi analiz (Functional Analysis), Moscow: Nauka, 1977.

    Google Scholar 

  23. Babenko, K.I., Osnovy chislennogo analiza (Foundations of Numerical Analysis), Moscow: Nauka, 1986.

    MATH  Google Scholar 

  24. Ivanov, V.V., Metody vychislenii na EVM (Methods of Computation on Computers), Kiev: Naukova Dumka, 1986.

    Google Scholar 

  25. Bakhvalov, N.S., Zhidkov, N.P., Kobel’kov, G.M., Chislennye metody (Numerical Methods), Moscow: BINOM. Laboratoriya Znanii, 2008.

    MATH  Google Scholar 

  26. Mex-Files, GNU Octave. https://octave.org/doc/interpreter/Mex_002dFiles.html

  27. Techniques to Improve Performance, MATLAB Documentation. https://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

Download references

Acknowledgments

I express my gratitude to my graduate students P.Yu. Radu and A.G. Kondrashov for their help with the computational experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Bulychev.

Additional information

This paper was recommended for publication by M.M. Khrustalev, a member of the Editorial Board

Russian Text © The Author(s), 2020, published in Avtomatika i Telemekhanika, 2020, No. 6, pp. 131–152.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulychev, Y.G. Some Aspects of Identification of Dynamic Objects under Incorrect Observation Conditions. Autom Remote Control 81, 1073–1090 (2020). https://doi.org/10.1134/S0005117920060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920060090

Keywords