Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stabilizing the Oscillations of a Controlled Mechanical System with n Degrees of Freedom

  • nonlinear systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A mechanical system with n degrees of freedom subjected to the action of positional forces and a small smooth control is considered. It is assumed that in the absence of control, the system may have a family of single-frequency oscillations. A universal control—a nonlinear force that implements and simultaneously stabilizes a cycle in the system—is found. An illustrative example is given. In the previous paper [5], the universal control was designed for a two-dimensional manifold of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pontryagin, L. S. On Dynamic Systems That Are Close to Hamiltonian Systems. Zh. Eksper. Teor. Fiz 4(no. 9), 883–885 (1934).

    Google Scholar 

  2. Patidar, V., Sharma, A. & Purohit, G. Dynamical Behaviour of Parametrically Driven Duffing and Externally Driven Helmholtz-Duffing Oscillators under Nonlinear Dissipation. Nonlin. Dynam. 83(nos. 1-2), 375–388 (2016).

    Article  MathSciNet  Google Scholar 

  3. Zaitsev, S., Shtempluck, O. & Gottlieb, E. B. Nonlinear Damping in a Micromechanical Oscillator. Nonlin. Dynam. 67(no. 1), 859–883 (2016).

    Article  Google Scholar 

  4. Tkhai, V. N. Stabilizing the Oscillations of a Controlled Mechanical System. Autom. Remote Control 80(no. 11), 1996–2004 (2019).

    Article  MathSciNet  Google Scholar 

  5. Shiriaev, A., Perram, J. W. & Canudas-de-Wit, C. Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach. IEEE Trans. Autom. Control 50(no. 8), 1164–1176 (2005).

    Article  MathSciNet  Google Scholar 

  6. Tkhai, V. N. The Reversibility of Mechanical Systems. J. Appl. Math. Mech. 55(no. 4), 461–468 (1991).

    Article  MathSciNet  Google Scholar 

  7. Tkhai, V. N. The Behaviour of the Period of Symmetrical Periodic Motions. J. Appl. Math. Mech. 76(no. 4), 446–450 (2012).

    Article  MathSciNet  Google Scholar 

  8. Tkhai, V. N. Periodic Motions of a Perturbed Reversible Mechanical System. J. Appl. Math. Mech. 79(no. 2), 122–131 (2015).

    Article  MathSciNet  Google Scholar 

  9. Malkin, I. G. Nekotorye zadachi teorii nelineinykh kolebanii (Some Problems in the Theory of Nonlinear Oscillations). (Gostekhizdat, Moscow, 1956).

    Google Scholar 

  10. Evdokimenko, A. P. On Equilibrium Configurations and Their Stability for a System of Two Coupled Pendulums. Mech. Solids. 52(no. 3), 266–277 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tkhai.

Appendices

Appendix

1.1 Lyapunov Transformation for System of Variational Equations

A cycle of the controlled mechanical system satisfies variational equations of the form

$$\begin{array}{rcl}\delta {\ddot{q}}_{s}&=&\mathop{\sum }\limits_{j = 1}^{n}{p}_{sj}(t)\delta {q}_{j}+\mathop{\sum }\limits_{j=1}^{n}{r}_{sj}(t)\delta {\dot{q}}_{j}+\mu \delta {R}_{s}(\delta q,\delta \dot{q}),\\ {p}_{sj}(t)&=&{p}_{sj}(-t),\quad {r}_{sj}(t)=-{r}_{sj}(-t),\quad {p}_{sj}(t+2\pi )={p}_{sj}(t),\quad {r}_{sj}(t+2\pi )={r}_{sj}(t).\end{array}$$
(A.1)

For μ = 0 the system (A.1) is a reversible linear periodic system described by

$$\dot{u}={A}_{-}(t)u+{A}_{+}(t)v,\quad \dot{v}={B}_{+}(t)u+{B}_{-}(t)v,\quad u,v\in {{\rm{R}}}^{n},$$
(A.2)

with two stationary sets of the form

$${M}_{u}=\{u,v,t:v=0,\sin \,t=0\},\quad {M}_{v}=\{u,v,t:u=0,\sin \,t=0\}.$$

Here the plus (minus) sign indicates the matrices and vectors containing the even (odd, respectively) 2π-periodic functions.

The adjoint system for (A.2),

$$\dot{\xi }=-{A}_{-}^{{\rm{T}}}(t)\xi -{B}_{+}^{{\rm{T}}}(t)\eta ,\quad \dot{\eta }=-{A}_{+}^{{\rm{T}}}(t)\xi -{B}_{-}^{{\rm{T}}}(t)\eta ,$$
(A.3)

where T means transposition, is also reversible and admits of two stationary sets:

$${M}_{\xi }=\{\xi ,\eta ,t:\eta =0,\sin \,t=0\},\quad {M}_{\eta }=\{\xi ,\eta ,t:\xi =0,\sin \,t=0\}.$$

The solution (ξ(t), η(t)) of the system (A.3) is used to write the first integral

$$f={\xi }_{1}(t){u}_{1}+\ldots +{\xi }_{n}(t){u}_{n}+{\eta }_{1}(t){v}_{1}+\ldots +{\eta }_{n}(t){v}_{n}$$
(A.4)

of the system (A.2). By the way, this result shows that the function ψ(t) in the amplitude Eq. (2) is odd.

The system (A.2) is reduced to a system with constant coefficients using an appropriate Lyapunov transformation. Recall that the system (A.2) contains n solutions symmetrical with respect to Mξ, as well as the same number of solutions symmetrical with respect to Mη. Choose these 2n solutions to obtain 2n integrals f for reducing the reversible system (A.2) to a system with constant coefficients. Following [8], select the transformation

$${x}_{s}={p}_{s}^{+}(t)u+{q}_{s}^{-}(t)v,\quad {y}_{s}={p}_{s}^{-}(t)u+{q}_{s}^{+}(t)v,\quad s=1,\ldots ,n,$$
(A.5)

with the 2π-periodic vector functions \({p}_{s}^{\pm }(t)\) and \({q}_{s}^{\pm }(t)\); the transformed system contains the stationary sets

$${M}_{x}=\{x,y,t:y=0,t=0\},\quad {M}_{y}=\{x,y,t:x=0,t=0\}.$$

The system (A.1) is transformed simultaneously.

The reference SPM has characteristics with zero real parts. Therefore, consider the following cases: (a) a pair of zero characteristics in a Jordan cell; (b) a pair  ± iωω > 0, of pure imaginary characteristics; (c) a pair of simple zero characteristics. Write the integrals (A.4) and the corresponding reduced equations in the three cases mentioned.

(a) A pair of zero characteristics in a Jordan cell. This pair corresponds to the first integrals

$$\begin{array}{cc}{f}_{1}={g}_{* }^{-}={\rm{const}},\quad {f}_{2}=t{g}_{* }^{-}-{g}_{* }^{+}={\rm{const}},\\ {g}_{* }^{\pm }={\xi }_{* \,1}^{\pm }(t)\delta {q}_{1}+\ldots +{\xi }_{* \,n}^{\pm }(t)\delta {q}_{n}+{\eta }_{* \,1}^{\mp }(t)\delta {\dot{q}}_{1}+\ldots +{\eta }_{* \,n}^{\mp }(t)\delta {\dot{q}}_{n}.\end{array}$$

Find the derivatives \({\dot{f}}_{1}\) and \({\dot{f}}_{2}\) along the trajectories of the system (A.1):

$${\dot{f}}_{1}=\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{* \,s}^{+}(t)\delta {R}_{s}(\delta q,\delta \dot{q}),\quad {\dot{f}}_{2}=-\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{* \,s}^{-}(t)\delta \,{R}_{s}(\delta q,\delta \dot{q}).$$

Denoting \({x}_{* }={g}_{* }^{+}\) and \({y}_{* }={g}_{* }^{-}\), for μ = 0 obtain \({\dot{y}}_{* }={\dot{f}}_{1}=0\), \({\dot{x}}_{* }={y}_{* }-{\dot{f}}_{2}\), and \({\dot{f}}_{2}=0\). For μ ≠ 0, from (A.1) it follows that

$${\dot{x}}_{* }={y}_{* }+\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{* \,s}^{-}(t)\delta {u}_{s},\quad {\dot{y}}_{* }=\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{* \,s}^{+}(t)\delta {u}_{s}.$$

(b) A pair  ± iω of pure imaginary characteristics. In this case, the first integrals have the complex representation

$$\begin{array}{rcl}{f}_{\pm }&=&\exp (\pm i\omega t){g}_{\omega }^{\pm }(\delta q,\delta \dot{q}),\\ {g}_{\omega }^{\pm }&=&{\xi }_{\omega \,1}^{\pm }(t)\delta \,{q}_{1}+\ldots +{\xi }_{\omega \,n}^{\pm }(t)\delta \,{q}_{n}+{\eta }_{\omega \,1}^{\mp }(t)\delta \,\dot{q}+\ldots +{\eta }_{\omega \,n}^{\mp }(t)\delta \,{\dot{q}}_{n}.\end{array}$$

Calculate the total derivatives of the functions f± along the trajectories of the system (A.1):

$${\dot{f}}_{\pm }=\mu \exp (\pm i\omega t)\mathop{\sum }\limits_{s=1}^{n}{\eta }_{\omega \,s}^{\mp }(t)\delta {R}_{s}(\delta q,\delta \dot{q}).$$

Next, find

$${\dot{g}}_{\omega }^{\pm }={\dot{f}}_{\pm }\exp (\mp i\omega t)\pm i\omega \,{f}_{\pm }\exp (\mp i\omega t).$$

Then the variables \({x}_{\omega }={g}_{\omega }^{+}\) and \({y}_{\omega }=i{g}_{\omega }^{-}\) satisfy the equations

$${\dot{x}}_{\omega }=\omega {y}_{\omega }+\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{\omega \,s}^{-}(t)\delta {u}_{s},\quad {\dot{y}}_{\omega }=-\omega \,{x}_{\omega }+\mu \mathop{\sum }\limits_{s = 1}^{n}{\eta }_{\omega s}^{+}(t)\delta \,{u}_{s}.$$

Finally, transition to the real variables yields two equations for the system (7).

(c) A pair of simple zero characteristics. Here the first integrals are given by

$${f}_{1,2}={g}^{\pm }={\xi }_{1}^{\pm }(t)\delta {q}_{1}+\ldots +{\xi }_{n}^{\pm }(t)\delta \,{q}_{n}+{\eta }_{1}^{\mp }(t)\delta {\dot{q}}_{1}+\ldots +{\eta }_{n}{(t)}^{\mp }\delta {\dot{q}}_{n}.$$

The corresponding equations of the system (A.1) take the form

$${\dot{x}}_{+}=\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{s}^{-}(t)\delta {R}_{s},\quad {\dot{y}}_{-}=\mu \mathop{\sum }\limits_{s=1}^{n}{\eta }_{s}^{+}(t)\delta \,{R}_{s}.$$

Thus, the groups of variables (x*y*), (xωyω) and (x+y) can be adopted for reducing the system (A.1) to a convenient form for further calculation of characteristics. For this purpose, apply the transformation (A.5) in which u = δq, \(v=\delta \dot{q}\), the vector x(y) consists of the vectors x*xωx+ (y*yωy+, respectively), and the functions \(\delta \,R(\delta \,q,\delta \dot{q})\) and the vectors δq and \(\delta \dot{q}\) are replaced by the vectors x and y using the inverse of (A.5).

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-01-00146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkhai, V. Stabilizing the Oscillations of a Controlled Mechanical System with n Degrees of Freedom. Autom Remote Control 81, 1637–1646 (2020). https://doi.org/10.1134/S0005117920090040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920090040

Keywords